We believe that names have a powerful influence on the experiments we do and the way in which we think. For this reason, and in the light of new evidence about the function and evolution of the vertebrate brain, an international consortium of neuroscientists has reconsidered the traditional, 100-year-old terminology that is used to describe the avian cerebrum. Our current understanding of the avian brain -in particular the neocortex-like cognitive functions of the avian pallium -requires a new terminology that better reflects these functions and the homologies between avian and mammalian brains.One hundred years ago, Edinger, the father of comparative neuroanatomy, formulated a unified theory of brain evolution that formed the basis of a nomenclature that has been used to define the cerebral subdivisions of all vertebrates 1 . This resulted in terms and associated concepts such as palaeostriatum, archistriatum, neostriatum and neocortex that are still in common use. According to this theory, the avian cerebrum is almost entirely composed of basal ganglia, the basal ganglia is involved in only instinctive behaviour, and the malleable behaviour that is thought to typify mammals exclusively requires the so-called neocortex. However, towards the end of the twentieth century, there accumulated a wealth of evidence that these viewpoints were incorrect. The avian cerebrum has a large pallial territory that performs functions similar to those of the mammalian cortex. Although the avian pallium is nuclear, and the mammalian cortex is laminar in organization, the avian pallium supports cognitive abilities similar to, and for some species more advanced than, those of many mammals. To eliminate these misconceptions, an international forum of neuroscientists (BOX 1) has, for the first time in 100 years, developed new terminology that more accurately reflects our current understanding of the avian cerebrum and its homologies with mammals. This change in terminology is part of a new understanding of vertebrate brain evolution.In this article, we summarize the traditional view of telencephalic evolution before reviewing more recent findings and insights. We then present the new nomenclature that has been Correspondence to Erich Jarvis at the
The organization of the pigeon hippocampal formation was examined by tract tracing by using biotinylated dextran amine (BDA) and cholera toxin B subunit (CTB) and by injections of kainic acid to produce excitotoxic lesions. The hippocampal formation was divided into seven subdivisions based on Nissl staining and intrinsic and septal connections: dorsomedial (DM), dorsolateral (DL), triangular (Tr), V-shaped layer, magnocellular (Ma), parvocellular, and cell-poor regions. DL was composed of dorsal and ventral portions and sent associational fibers to DM, the V-shaped layer, and Tr. DL had strong reciprocal connections with the densocellular part of the hyperpallium (HD) and projected to the dorsolateral corticoid area. DM had reciprocal fiber connections with the V-shaped layer, Ma, and DL as well as with several subdivisions of the arcopallium. DL and DM, but not the V-shaped layer, projected fibers to the septum where those from DM exceeded in number those from DL. These projections further extended to the hypothalamus, particularly the lateral hypothalamic area. The lateral and medial septal nuclei projected back a very small number of ascending fibers to the hippocampal formation. Intraventricular injections of kainic acid induced neuronal loss widely in the hippocampal formation and subsequently produced gliosis in DM. These results indicate that DL receives its main afferents from HD and in turn sends inputs to an intrinsic circuit composed of hippocampal subdivisions DM, Ma, Tr, and the V-shaped layer; and also that DM is the main exit to the septum and hypothalamus. It is suggested that neurons in the V-shaped layer are intrinsic. Together, the results suggest that the V-shaped layer is comparable to the dentate gyrus of the mammalian hippocampal formation and that DM incorporates components comparable to both Ammon's horn and the subiculum.
Birds have well-developed basal ganglia within the telencephalon, including a striatum consisting of the medially located lobus parolfactorius (LPO) and the laterally located paleostriatum augmentatum (PA). Relatively little is known, however, about the extent and organization of the telencephalic "cortical" input to the avian basal ganglia (i.e., the avian "corticostriatal" projection system). Using retrograde and anterograde neuroanatomical pathway tracers to address this issue, we found that a large continuous expanse of the outer pallium projects to the striatum of the basal ganglia in pigeons. This expanse includes the Wulst and archistriatum as well as the entire outer rind of the pallium intervening between Wulst and archistriatum, termed by us the pallium externum (PE). In addition, the caudolateral neostriatum (NCL), pyriform cortex, and hippocampal complex also give rise to striatal projections in pigeon. A restricted number of these pallial regions (such as the "limbic" NCL, pyriform cortex, and ventral/caudal parts of the archistriatum) project to such ventral striatal structures as the olfactory tubercle (TO), nucleus accumbens (Ac), and bed nucleus of the stria terminalis (BNST). Such "limbic" pallial areas also project to medialmost LPO and lateralmost PA, while the hyperstriatum accessorium portion of the Wulst, the PE, and the dorsal parts of the archistriatum were found to project primarily to the remainder of LPO (the lateral two-thirds) and PA (the medial four-fifths). The available evidence indicates that the diverse pallial regions projecting to the striatum in birds, as in mammals, are parts of higher order sensory or motor systems. The extensive corticostriatal system in both birds and mammals appears to include two types of pallial neurons: 1) those that project to both striatum and brainstem (i.e., those in the Wulst and the archistriatum) and 2) those that project to striatum but not to brainstem (i.e., those in the PE). The lack of extensive corticostriatal projections from either type of neuron in anamniotes suggests that the anamniote-amniote evolutionary transition was marked by the emergence of the corticostriatal projection system as a prominent source of sensory and motor information for the striatum, possibly facilitating the role of the basal ganglia in movement control.
The descending, efferent projections of nucleus robustus archistriatalis were investigated in male zebra finches and greenfinches with injections of either biotinylated dextran amine or cholera toxin B-chain conjugated to horseradish peroxidase. The results show that in addition to the well-known projections to the tracheosyringeal motor nucleus and the dorsomedial nucleus of the intercollicular complex, there are other projections of comparable density to the ipsilateral nucleus ambiguus and nucleus retroambigualis. Within nucleus ambiguus, robustus axons terminate in close proximity to laryngeal motoneurons which were retrogradely labelled in the same bird by injections of cholera B-chain into the laryngeal muscles; and within nucleus retroambigualis robustus axons terminate in relation to bulbospinal neurons previously shown to project to regions of spinal cord containing motoneurons innervating abdominal expiratory muscles (J.M. Wild, Brain Res. 606:119-124, 1993). These projections of nucleus robustus thus seem well placed to coordinate syringeal, laryngeal, and expiratory muscle activity during vocalization. Other relatively sparse, but distinct, projections of nucleus robustus were found to nucleus dorsolateralis anterior thalami, pars medialis, to a narrow region between the superior olivary nucleus and the spinal lemniscus, and to the rostral ventrolateral medulla. Neurons in these last two locations were retrogradely labelled bilaterally following injections of cholera B-chain into nucleus retroambigualis of one side. Together with sparse contralateral projections of nucleus robustus to all brainstem targets receiving ipsilateral projections, potential pathways are thus identified by which the respiratory-vocal activity controlled by one side of the lower medulla can be influenced by the nucleus robustus of either side, thereby possibly bringing about bilateral coordination of respiratory-vocal output.
Magnetic compass information has a key role in bird orientation, but the physiological mechanisms enabling birds to sense the Earth's magnetic field remain one of the unresolved mysteries in biology. Two biophysical mechanisms have become established as the most promising magnetodetection candidates. The iron-mineral-based hypothesis suggests that magnetic information is detected by magnetoreceptors in the upper beak and transmitted through the ophthalmic branch of the trigeminal nerve to the brain. The light-dependent hypothesis suggests that magnetic field direction is sensed by radical pair-forming photopigments in the eyes and that this visual signal is processed in cluster N, a specialized, night-time active, light-processing forebrain region. Here we report that European robins with bilateral lesions of cluster N are unable to show oriented magnetic-compass-guided behaviour but are able to perform sun compass and star compass orientation behaviour. In contrast, bilateral section of the ophthalmic branch of the trigeminal nerve in European robins did not influence the birds' ability to use their magnetic compass for orientation. These data show that cluster N is required for magnetic compass orientation in this species and indicate that it may be specifically involved in processing of magnetic compass information. Furthermore, the data strongly suggest that a vision-mediated mechanism underlies the magnetic compass in this migratory songbird, and that the putative iron-mineral-based receptors in the upper beak connected to the brain by the trigeminal nerve are neither necessary nor sufficient for magnetic compass orientation in European robins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.