An overview is given of the applications of short and ultrashort lasers in material processing. Shorter pulses reduce heat-affected damage of the material and opens new ways for nanometer accuracy. Even forty years after the development of the laser there is a lot of effort in developing new and better performing lasers. The driving force is higher accuracy at reasonable cost, which is realised by compact systems delivering short laser pulses of high beam quality. Another trend is the shift towards shorter wavelengths, which are better absorbed by the material and which allows smaller feature sizes to be produced. Examples of new products, which became possible by this technique, are given. The trends in miniaturization as predicted by Moore and Taniguchi are expected to continue over the next decade too thanks to short and ultrashort laser machining techniques. After the age of steam and the age of electricity we have entered the age of photons now Keywords: Micro-machining, Laser, Ablation 101, (Figure 2.3) has simulated the interaction and ablation behaviour of aluminium, copper and silicon at 266 nm wavelength. The optical penetration depth was 7, 12 and 5 nm respectively. The applied power density was in the range of 5 to 50.109 W/cm2. It was found that the material evaporates as small particles (0.3-10 nm), most of them smaller than 1 nm. The average velocity of
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.