The compressive stress-strain behavior and other characteristics of treated fly ash based roof tiles have been studied by several experimental tests. This paper attempts to presents the results and observations of a study and comparison based on the past reported experimental data. Based on the results and observations of the comprehensive experimental study, five "control points" have been identified. The new sets of experiment have been carried out to investigate whether it might be possible the use of fly ash in fly ash based roof tiles for residential construction. In the present study, treated fly ash (TFA) of C category was used with different materials as a replacement of clay for making treated fly ash stone dust roof tiles (TFASDRT). Treated fly ash stone dust roof tiles (TFASDRT) were studied at varying percentages of cement, coarse sand, and radish stone dust (RSD) along with the constant percentage of waste polythene fibre (WPF). A research program was undertaken to evaluate the suitability of such test for assessing the properties of treated fly ash stone dust roof tiles (TFASDRT). The result of this study recommends that the fly ash based roof tiles provides a sustainable supplement to the traditional clay roof tiles, they increase the efficiency of traditional roof tiles and significantly help to reduce the environmental issues associated with the disposal of these waste materials.
The Present study was carried out to evaluate the influence of addition of Fibres and Class 'C' Flyash on the mechanical properties of concrete. Fibre Reinforced Concrete (FRC) is very useful in extreme climate where shrinkage of concrete causes cracks. The Fibre Reinforced Flyash concrete (FRFAC) has been successfully used to minimize cavitations / damages in hydraulics structures. The FRC with and without Fly ash was tested with the fraction of volume of the steel Fibre in concrete which varied from 0.0 to 1.0%. For determining, the compressive strength & permeability cubes of 150 mm size were prepared. Nine cubes of each series were prepared; out of nine, three were used for determining the strength & permeability of cracked & un-cracked concrete. The formation of additional calcium silicate hydrates in the hydrated cement matrix because of the addition of fly ash in FRFAC results in its improved characteristics. The initial tangent modulus of FRC and FRFAC is found to be independent of the quantity of Fibers. The experimental investigation shows that the increase in the Fibre content increases the compressive strength, crushing strain and Poisson's Ratio of FRC and FRFAC. While increasing the Fibre content, the permeability of concrete reduced. The mode of cracking has been discussed.
Abstract. The aim of present study is to investigate about the potential use of coal fly ash along with other natural and solid wastes for the production of coal fly ash based bricks and roof tiles. The study is based on the comprehensive reviews available from the previous experimental data on coal fly ash based bricks and roof tiles. The study intendeds to provide the essential technical information and data for the use of fly ash mix with other solid wastes and reveal their suitability as construction materials. It has been found that samples were non-hazardous in nature and vigorously used as an additional construction materials and their compositions are perfectly fit to make the strong composite material for bricks and tiles. The three past studies have been demonstrated that, fly ash based bricks and roof tiles provides a sustainable supplement to the traditional clay bricks and roof tiles, that not only increases the efficiency of traditional bricks and roof tiles but also helps significantly to reduce the environmental issues associated with the disposal of these waste materials. In addition to this study highlights the potential use of fly ash for producing sustainable construction materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.