Fabrication of silver nanowires on a domain-patterned lithium niobate template by inducing a photochemical reaction in an aqueous solution is reported. Silver deposition occurs preferentially along the domain boundaries which separate antiparallel domains. The nanowires can reach lengths of hundreds of micrometres, and their location can be controlled by generating domain patterns of a desired configuration while their width depends on deposition conditions, such as temperature, solution concentration and ultraviolet (UV) light exposure time. The selective deposition process is explained by a combination of the inhomogeneous distribution of the electric field in the vicinity of the domain wall and the polarization screening mechanism of the template material. Controllable and selective deposition of metal species onto nanoscale domain-patterned ferroelectric templates may provide an alternative bottom-up route to lithographic fabrication methods.
We demonstrate that (Pb0.9La0.1)(Zr0.65Ti0.35)0.975O3 (PLZT) (10∕65∕35) thin films that have a nominally relaxor composition and that are deposited by chemical solution deposition onto copper foil show polarization hysteresis. Ferroelectric domain switching and a shift in Curie temperature are also observed. This is in contrast to the non-hysteretic behavior of films with identical composition prepared on Pt∕SiO2∕Si substrates. This suggests that the mismatch in coefficient of thermal expansion between PLZT and copper induces a compressive strain in the PLZT during cooling after high temperature crystallization under low pO2, and causes an out-of-plane polarization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.