The accumulation of the disaccharide trehalose in anhydrobiotic organisms allows them to survive severe environmental stress. A plant cDNA, SlTPS1, encoding a 109-kD protein, was isolated from the resurrection plant Selaginella lepidophylla, which accumulates high levels of trehalose. Protein-sequence comparison showed that SlTPS1 shares high similarity to trehalose-6-phosphate synthase genes from prokaryotes and eukaryotes. SlTPS1 mRNA was constitutively expressed in S. lepidophylla. DNA gel-blot analysis indicated that SlTPS1 is present as a single-copy gene. Transformation of a Saccharomyces cerevisiae tps1⌬ mutant disrupted in the ScTPS1 gene with S. lepidophylla SlTPS1 restored growth on fermentable sugars and the synthesis of trehalose at high levels. Moreover, the SlTPS1 gene introduced into the tps1⌬ mutant was able to complement both deficiencies: sensitivity to sublethal heat treatment at 39°C and induced thermotolerance at 50°C. The osmosensitive phenotype of the yeast tps1⌬ mutant grown in NaCl and sorbitol was also restored by the SlTPS1 gene. Thus, SlTPS1 protein is a functional plant homolog capable of sustaining trehalose biosynthesis and could play a major role in stress tolerance in S. lepidophylla.
HSP101 belongs to the ClpB protein subfamily whose members promote the renaturation of protein aggregates and are essential for the induction of thermotolerance. We found that maize HSP101 accumulated in mature kernels in the absence of heat stress. At optimal temperatures, HSP101 disappeared within the first 3 days after imbibition, although its levels increased in response to heat shock. In embryonic cells, HSP101 concentrated in the nucleus and in some nucleoli. Hsp101 maps near the umc132 and npi280 markers on chromosome 6. Five maize hsp101-m-:: Mu1 alleles were isolated. Mutants were null for HSP101 and defective in both induced and basal thermotolerance. Moreover, during the first 3 days after imbibition, primary roots grew faster in the mutants at optimal temperature. Thus, HSP101 is a nucleus-localized protein that, in addition to its role in thermotolerance, negatively influences the growth rate of the primary root. HSP101 is dispensable for proper embryo and whole plant development in the absence of heat stress.
SummaryMaize embryonic axes contain stored mRNAs, some of which are able to undergo cap-independent translation initiation during germination. The Hsp101 mRNA, encoding a heat shock protein, is essential for thermotolerance induction and is present among the stored transcripts. This research aimed to investigate whether the Hsp101 transcript is IRES-driven regulated upon heat stress. Hsp101 transcribed either in vitro or in vivo was efficiently translated via a cap-independent mechanism. This was observed either in an animal in vitro translation system containing proteolytically cleaved eukaryotic initiation factor eIF4G or in a plant system lacking both eIF4E and eIFiso4E initiation factors. Deletion of the 5¢ untranslated region (UTR) from the Hsp101 mRNA abolished its cap-independent translation indicating that this nucleotide sequence is required to confer cap-independent initiation. Bicistronic constructs containing the Hsp101 mRNA 5¢UTR in sense and anti-sense directions between two reporter genes were translated in both cap-independent systems. A similar bicistronic construct containing a viral internal ribosome entry site (IRES) element between the reporter genes was used as control. Internal translation of the second reporter gene was observed when the Hsp101 5¢UTR was in the sense but not in the anti-sense orientation in the bicistronic construct. Taken together, these data suggest that the 5¢UTR of maize Hsp101, a plant cellular mRNA, functions as an IRES-like element accounting for its capindependent translation during heat stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.