Although liquids normally crystallize on cooling, there are members of all liquid types (including molecular, ionic and metallic) that supercool and then solidify at their glass transition temperature, Tg. This continuous solidification process exhibits great diversity within each class of liquid-both in the steepness of the viscosity-temperature profile, and in the rate at which the excess entropy of the liquid over the crystalline phase changes as Tg is approached. However, the source of the diversity is unknown. The viscosity and associated relaxation time behaviour have been classified between 'strong' and 'fragile' extremes, using Tg as a scaling parameter, but attempts to correlate such kinetic properties with the thermodynamic behaviour have been controversial. Here we show that the kinetic fragility can be correlated with a scaled quantity representing excess entropy, using data over the entire fragility range and embracing liquids of all classes. The excess entropy used in our correlation contains both configurational and vibration-related contributions. In order to reconcile our correlation with existing theory and simulations, we propose that variations in the fragility of liquids originate in differences between their vibrational heat capacities, harmonic and anharmonic, which we interpret in terms of an energy landscape. The differences evidently relate to behaviour of low-energy modes near and below the boson peak.
HSP101 belongs to the ClpB protein subfamily whose members promote the renaturation of protein aggregates and are essential for the induction of thermotolerance. We found that maize HSP101 accumulated in mature kernels in the absence of heat stress. At optimal temperatures, HSP101 disappeared within the first 3 days after imbibition, although its levels increased in response to heat shock. In embryonic cells, HSP101 concentrated in the nucleus and in some nucleoli. Hsp101 maps near the umc132 and npi280 markers on chromosome 6. Five maize hsp101-m-:: Mu1 alleles were isolated. Mutants were null for HSP101 and defective in both induced and basal thermotolerance. Moreover, during the first 3 days after imbibition, primary roots grew faster in the mutants at optimal temperature. Thus, HSP101 is a nucleus-localized protein that, in addition to its role in thermotolerance, negatively influences the growth rate of the primary root. HSP101 is dispensable for proper embryo and whole plant development in the absence of heat stress.
SummaryMaize embryonic axes contain stored mRNAs, some of which are able to undergo cap-independent translation initiation during germination. The Hsp101 mRNA, encoding a heat shock protein, is essential for thermotolerance induction and is present among the stored transcripts. This research aimed to investigate whether the Hsp101 transcript is IRES-driven regulated upon heat stress. Hsp101 transcribed either in vitro or in vivo was efficiently translated via a cap-independent mechanism. This was observed either in an animal in vitro translation system containing proteolytically cleaved eukaryotic initiation factor eIF4G or in a plant system lacking both eIF4E and eIFiso4E initiation factors. Deletion of the 5¢ untranslated region (UTR) from the Hsp101 mRNA abolished its cap-independent translation indicating that this nucleotide sequence is required to confer cap-independent initiation. Bicistronic constructs containing the Hsp101 mRNA 5¢UTR in sense and anti-sense directions between two reporter genes were translated in both cap-independent systems. A similar bicistronic construct containing a viral internal ribosome entry site (IRES) element between the reporter genes was used as control. Internal translation of the second reporter gene was observed when the Hsp101 5¢UTR was in the sense but not in the anti-sense orientation in the bicistronic construct. Taken together, these data suggest that the 5¢UTR of maize Hsp101, a plant cellular mRNA, functions as an IRES-like element accounting for its capindependent translation during heat stress.
The melanins constitute a diverse group of natural products found in most organisms, having functions related to protection against chemical and physical stresses. These products originate from the enzyme-catalyzed oxidation of phenolic and indolic substrates that polymerize to yield melanins, which include eumelanin, pheomelanin, pyomelanin, and the allomelanins. The enzymes involved in melanin formation belong mainly to the tyrosinase and laccase protein families. The melanins are polymeric materials having applications in the pharmaceutical, cosmetic, optical, and electronic industries. The biotechnological production of these polymers is an attractive alternative to obtaining them by extraction from plant or animal material, where they are present at low concentrations. Several species of microorganisms have been identified as having a natural melanogenic capacity. The development and optimization of culture conditions with these organisms has resulted in processes for generating melanins. These processes are based on the conversion of melanin precursors present in the culture medium to the corresponding polymers. With the application of genetic engineering techniques, it has become possible to overexpress genes encoding enzymes involved in melanin formation, mostly tyrosinases, leading to an improvement in the productivity of melanogenic organisms, as well as allowing the generation of novel recombinant microbial strains that can produce diverse types of melanins. Furthermore, the metabolic engineering of microbial hosts by modifying pathways related to the supply of melanogenic precursors has resulted in strains with the capacity of performing the total synthesis of melanins from simple carbon sources in the scale of grams. In this review, the latest advances toward the generation of recombinant melanin production strains and production processes are summarized and discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.