The Horizontal Wind Model (HWM) has been updated in the thermosphere with new observations and formulation changes. These new data are ground-based 630 nm Fabry-Perot Interferometer (FPI) measurements in the equatorial and polar regions, as well as cross-track winds from the Gravity Field and Steady State Ocean Circulation Explorer (GOCE) satellite. The GOCE wind observations provide valuable wind data in the twilight regions. The ground-based FPI measurements fill latitudinal data gaps in the prior observational database. Construction of this reference model also provides the opportunity to compare these new measurements. The resulting update (HWM14) provides an improved time-dependent, observationally based, global empirical specification of the upper atmospheric general circulation patterns and migrating tides. In basic agreement with existing accepted theoretical knowledge of the thermosphere general circulation, additional calculations indicate that the empirical wind specifications are self-consistent with climatological ionosphere plasma distribution and electric field patterns.
We report a significant poleward surge in thermospheric winds at subauroral and midlatitudes following the 17–18 March 2015 great geomagnetic storm. This premidnight surge is preceded by strong westward winds. These disturbances were observed over three sites with geodetic latitudes 35–42°N in the American sector by Fabry‐Perot interferometers at 630 nm wavelength. Prior to the wind disturbances, subauroral polarization streams (SAPS) were measured by the Millstone Hill incoherent scatter radar between 20 and 02 UT. We identify the observed neutral wind variations as driven by SAPS, through a scenario where strong ion flows cause a westward neutral wind, subsequently establishing a poleward wind surge due to the poleward Coriolis force on that westward wind. These regional disturbances appear to have prevented the well‐known storm time equatorward wind surge from propagating into low latitudes, with the consequence that the classic disturbance dynamo mechanism failed to occur.
Observations of thermospheric neutral winds and temperatures obtained during a geomagnetic storm on 2 October 2013 from a network of six Fabry‐Perot interferometers (FPIs) deployed in the Midwest United States are presented. Coincident with the commencement of the storm, the apparent horizontal wind is observed to surge westward and southward (toward the equator). Simultaneous to this surge in the apparent horizontal winds, an apparent downward wind of approximately 100 m/s lasting for 6 h is observed. The apparent neutral temperature is observed to increase by approximately 400 K over all of the sites. Observations from an all‐sky imaging system operated at the Millstone Hill observatory indicate the presence of a stable auroral red (SAR) arc and diffuse red aurora during this time. We suggest that the large sustained apparent downward winds arise from contamination of the spectral profile of the nominal thermospheric 630.0 nm emission by 630.0 nm emission from a different (nonthermospheric) source. Modeling demonstrates that the effect of an additional population of 630.0 nm photons, with a distinct velocity and temperature distribution, introduces an apparent Doppler shift when the combined emissions from the two sources are analyzed as a single population. Thus, the apparent Doppler shifts should not be interpreted as the bulk motion of the thermosphere, calling into question results from previous FPI studies of midlatitude storm time thermospheric winds. One possible source of contamination could be fast O related to the infusion of low‐energy O+ ions from the magnetosphere. The presence of low‐energy O+ is supported by observations made by the Helium, Oxygen, Proton, and Electron spectrometer instruments on the twin Van Allen Probes spacecraft, which show an influx of low‐energy ions during this period. These results emphasize the importance of distributed networks of instruments in understanding the complex dynamics that occur in the upper atmosphere during disturbed conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.