In dialyzed Myxicola axons substitution of heavy water (D2O) externally and internally slows both sodium and potassium kinetics and decreases the maximum conductances. Furthermore, this effect is strongly temperature dependent, the magnitude of the slowing produced by D2O substitution decreasing with increasing temperature over the range 3-14 degrees C with a Q10 of approximately 0.71. The relatively small magnitude of the D2O effect, combined with its strong temperature dependence, suggests that the rate limiting process producing a conducting channel involves appreciable local changes in solvent structure. Maximum conductances in the presence of D2O were decreased by approximately 30%, while the voltage dependences of both gNa and gK were not appreciably changed. In contrast to the effects of heavy water substitution on the ionic currents, membrane asymmetry currents were not altered by D2O, suggesting that gating charge movement may preceed by several steps the final transformation of the Na+ channel to a conducting state. In Myxicola axons the effect of temperature alone on asymmetry current kinetics can be well described via a simple temporal expansion equivalent to a Q10 of 2.2, which is somewhat less than the Q10 of GNa activation. The integral of membrane asymmetry current, representing maximum charge movement, is however not appreciably altered by temperature.
4. The time course of sodium activation cannot be adequately accounted for by (Q/Q.)x using any single value of x for potentials between -40 and 40 mV.5. Both asymmetry currents and INa are inactivated by the same amounts when Myxicola axons are repetitively depolarized at frequencies from 0-1 to 50 Hz.
Careful examination of effects of solvent substitution on excitable membranes offers the theoretical possibility of identifying those aspects of the gating and translocation processes which are associated with significant changes in solvent order. Such information can then be used to develop or modify moire detailed models. We have examined the effects of heavy water substitution in Cs+-and K+-dialyzed Myxicola giant axons. At temperatures of 4-6 degrees C, the rates of Na+, K+, and Na+ inactivation during a maintained depolarization were all showed by approximately 50% in the presence of D2O. In contrast, the effects of solvent substitution on the time-course of prepulse inactivation and reactivation were much larger, with slowing averaging 160%. Studies at higher temperatures yielded Q10's for Na+ activation and K+ activation which were essentially comparable (0.72) and slightly but significantly smaller than that for inactivation during a maintained depolarization (0.84). In contrast, the Q10 for the D2O effect on prepulse inactivation was approximately 0.48. Heavy water substitution decrease Gk to a significantly greater extent than G(Na), while the decrease in the conductance of the Na+ channel caused by D2O was independent of whether the current-carrying species was Na+ or Li+. Sodium channel selectivity to the alkali metal cations and NH4+ was not changed by D2O substitution.
Sodium currents after repolarization to more negative potentials after initial activation were digitally recorded in voltage-clamped Myxicola axons compensated for series resistance. The results are inconsistent with a Hodgkin-Huxley-type kinetic scheme. At potentials more negative than -50 mV, the Na+ tails show two distinct time constants, while at more positive potentials only a single exponential process can be resolved. The time-course of the tail currents was totally unaffected when tetrodotoxin (TTX) was added to reduce gNa to low values, demonstrating the absence of any artifact dependent on membrane current. Tail currents were altered by [Ca++] in a manner consistent with a simple alteration in surface potential. Asymmetry current "off" responses are well described by a single exponential. The time constant for this response averaged 2.3 times larger than that for the rapid component of the Na+ repolarization current and was not sensitive to pulse amplitude or duration, although it did vary with holding potential. Other asymmetry current observations confirm previous reports on Myxicola.
The effects of solvent substitution on the steady-state and kinetic properties of drugs (gallamine triethiodide) and ions (nonyltriethylammonium and Ba++) known to occlude Na+ and K+ channels have been examined and compared with the effects of D2O on unmodified channels. In general, we observed large isotope effects on the kinetics of occlusion at temperatures of 5 degrees C, but only minor effects at 15 degrees C, consistent with processes involving significant solvent interaction. Steady-state behavior was not affected. In the case of gallamine, where a dual effect on INa is evident, although both processes were D2O sensitive, only the occlusion phase had a significant temperature dependence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.