Sodium currents after repolarization to more negative potentials after initial activation were digitally recorded in voltage-clamped Myxicola axons compensated for series resistance. The results are inconsistent with a Hodgkin-Huxley-type kinetic scheme. At potentials more negative than -50 mV, the Na+ tails show two distinct time constants, while at more positive potentials only a single exponential process can be resolved. The time-course of the tail currents was totally unaffected when tetrodotoxin (TTX) was added to reduce gNa to low values, demonstrating the absence of any artifact dependent on membrane current. Tail currents were altered by [Ca++] in a manner consistent with a simple alteration in surface potential. Asymmetry current "off" responses are well described by a single exponential. The time constant for this response averaged 2.3 times larger than that for the rapid component of the Na+ repolarization current and was not sensitive to pulse amplitude or duration, although it did vary with holding potential. Other asymmetry current observations confirm previous reports on Myxicola.
Sodium inactivation and reactivation have been examined in voltage-clamped Myxicola axons after long-lasting membrane depolarizations produced either directly by changes in holding potential or indirectly by elevation of external K+ concentration. The results suggest the existence of a second inactivated state of the sodium channel with associated voltage-dependent rate constants at least two orders of magnitude lower than those of the fast inactivation process commonly examined. No specific influence of external [K+] on slow Na+ inactivation could be detected.
The Neurocybernetic Prosthesis (NCP) is a pacemaker-like device that has been designed to provide chronic intermittent vagus nerve stimulation. It is currently under study for the treatment of refractory partial onset epilepsy, and preliminary studies have indicated that partial onset seizures are improved by this therapy. The mechanisms by which it exerts its antiepileptic effect are not well understood. Although there are extensive pathways to the forebrain from the nuclei of the vagus nerve, the evidence that the NCP alters neural transmission outside the vagal system is limited. We prospectively examined somatosensory and brain stem auditory evoked potentials (BAEPs) in three patients receiving NCP implantation to determine if changes in these studies occur as a result of chronic vagus nerve stimulation. The results demonstrate a significant prolongation of the cervicomedullary to thalamocortical potential (N13-N20) interval on somatosensory evoked potential (SSEP) studies following activation of the device. No other significant changes were seen on SSEP or BAEP in the NCP implanted patients or normal controls. The findings suggest that chronic vagus nerve stimulation does alter neuronal networks outside of the brain stem vagus system, and may potentially provide a means to clinically monitor and titrate this therapy.
Myxicola giant axons internally injected with tetraethylammonium chloride to block potassium currents were examined under voltage clamp. The sodium inactivation time constants obtained from the decline in INa during step depolarizations were substantially smaller than those obtained using conditioning prepulses to the same potentials and the ratios agreed with previous observations using TTX. Inactivation shifts were also measured and found to be comparable to previous results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.