The aim of this research is to carryout Performance Analysis and Comparison of Wired and Wireless Communication Systems using Local Area Network (LAN) based on IEEE 802.3 and IEEE 802.11 standard, carried out with emphasis on Throughput, Delay, Bit error rate and Signal to Noise Ratio by collecting data at the Delta State University e-library network.. From the experimental results of the ten shots sample data for both wired and wireless networks, the wired network in its three transmission protocols (TCP, IPV4 & IPV6) has overall throughput average of 6085Kbps, while the wireless has overall throughput average of 52752Kbps. From the computed total average values, the wired network exhibited delays of 4ms, 45ms and 6ms in its (TCP, IPV4 & 6ms) respectively with overall average of 52 milliseconds (52ms). While on the other hand the wireless had delays of 36ms, 4ms & 52 ms in its (TCP, IPV4 & IPV6) respectively, with overall average of 57 milliseconds (57ms). In terms of Bit Error Rate, the wired network have bit error rate of 1.364E-03%, 7.773E-05% and 7.28E-06% in its (TCP, IPV4 and IPV6) respectively, with overall average of 4.83003E-04%. While the wireless network have the values of 8.-7E-05%, 0% and 7.61E-04% in its (TCP, IPV4 and IPV6) respectively, with overall average of 2.805667E-04%. With respect to Signal to Noise Ratio, the wired network have signal to noise ratio overall average of 8.266 dB. While the wireless network have the overall average of 5.178 dB. Based on the, networks performance metrics statistical data analyzed above for both wired and wireless, we are of the opinion that the wireless network is preferable to the wired network under the area investigated.
The Nigeria’s power sector transmission infrastructure continues to be challenged as it still remains the weak link in the electricity supply chain. The Nigerian Federal Government on its Roadmap for power sector reform highlighted that to accommodate the planned increase in generation capacity, there was need for a 30% increase in the “true deliverable” transmission capacity of the country’s 330kV network. But the technical feasibility of this plan is an issue to be considered. In this work, the existing 330kV Nigeria transmission network was expanded by the introduction of new lines and power stations, simulation was carried out and the effect was analyzed using Newton-Raphson algorithm in ETAP 12.6. The base case operating condition as obtained from the power flow on which the various transfer cases were implemented, gives a fair generation and loading pattern of the Nigerian grid. The total installed generating capacity of the base case considered was 11,948MW out of which 4,347.21MW was available for load level of 3,633.6MW. Result shows that the maximum load ability of the enhanced network was increased to 238.4% compared with the existing network when the Newton – Raphson iteration method was applied.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.