This position paper of the International Osteoporosis Foundation makes recommendations for vitamin D nutrition in elderly men and women from an evidencebased perspective.
High calcium intake during childhood has been suggested to increase bone mass accrual, potentially resulting in a greater peak bone mass. Whether the effects of calcium supplementation on bone mass accrual vary from one skeletal region to another, and to what extent the level of spontaneous calcium intake may affect the magnitude of the response has, however, not yet been clearly established. In a doubleblind, placebo-controlled study, 149 healthy prepubertal girls aged 7.9 Ϯ 0.1 yr (mean Ϯ SEM) were either allocated two food products containing 850 mg of calcium (Ca-suppl.) or not (placebo) on a daily basis for 1 yr. Areal bone mineral density (BMD), bone mineral content (BMC), and bone size were determined at six sites by dual-energy x-ray absorptiometry. The difference in BMD gain between calcium-supplemented (Ca-suppl.) and placebo was greater at radial (metaphysis and diaphysis) and femoral (neck, trochanter, and diaphyses) sites (7-12 mg/cm 2 per yr) than in the lumbar spine (2 mg/cm 2 per yr). The difference in BMD gains between Ca-suppl. and placebo was greatest in girls with a spontaneous calcium intake below the median of 880 mg/d. The increase in mean BMD of the 6 sites in the low-calcium consumers was accompanied by increased gains in mean BMC, bone size, and statural height. These results suggest a possible positive effect of calcium supplementation on skeletal growth at that age. In conclusion, calcium-enriched foods significantly increased bone mass accrual in prepubertal girls, with a preferential effect in the appendicular skeleton, and greater benefit at lower spontaneous calcium intake.
The list of risk factors for hypovitaminosis D in the Conclusion (first sentence, second paragraph) should include "higher latitude" rather than "lower latitude".The online version of the original article can be found at http://dx.doi.
Muscle strength plays an important role in determining risk for falls, which result in fractures and other injuries. While bone loss has long been recognized as an inevitable consequence of aging, sarcopenia-the gradual loss of skeletal muscle mass and strength that occurs with advancing age-has recently received increased attention. A review of the literature was undertaken to identify nutritional factors that contribute to loss of muscle mass. The role of protein, acid-base balance, vitamin D/calcium, and other minor nutrients like B vitamins was reviewed. Muscle wasting is a multifactorial process involving intrinsic and extrinsic alterations. A loss of fast twitch fibers, glycation of proteins, and insulin resistance may play an important role in the loss of muscle strength and development of sarcopenia. Protein intake plays an integral part in muscle health and an intake of 1.0-1.2 g/kg of body weight per day is probably optimal for older adults. There is a moderate [corrected] relationship between vitamin D status and muscle strength. Chronic ingestion of acid-producing diets appears to have a negative impact on muscle performance, and decreases in vitamin B12 and folic acid intake may also impair muscle function through their action on homocysteine. An adequate nutritional intake and an optimal dietary acid-base balance are important elements of any strategy to preserve muscle mass and strength during aging.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.