Oscillations in ice sheet extent during early and middle Miocene are intermittently preserved in the sedimentary record from the Antarctic continental shelf, with widespread erosion occurring during major ice sheet advances, and open marine deposition during times of ice sheet retreat. Data from seismic reflection surveys and drill sites from Deep Sea Drilling Project Leg 28 and International Ocean Discovery Program Expedition 374, located across the present-day middle continental shelf of the central Ross Sea (Antarctica), indicate the presence of expanded early to middle Miocene sedimentary sections. These include the Miocene climate optimum (MCO ca. 17−14.6 Ma) and the middle Miocene climate transition (MMCT ca. 14.6−13.9 Ma). Here, we correlate drill core records, wireline logs and reflection seismic data to elucidate the depositional architecture of the continental shelf and reconstruct the evolution and variability of dynamic ice sheets in the Ross Sea during the Miocene. Drill-site data are used to constrain seismic isopach maps that document the evolution of different ice sheets and ice caps which influenced sedimentary processes in the Ross Sea through the early to middle Miocene. In the early Miocene, periods of localized advance of the ice margin are revealed by the formation of thick sediment wedges prograding into the basins. At this time, morainal bank complexes are distinguished along the basin margins suggesting sediment supply derived from marine-terminating glaciers. During the MCO, biosiliceous-bearing sediments are regionally mapped within the depocenters of the major sedimentary basin across the Ross Sea, indicative of widespread open marine deposition with reduced glacimarine influence. At the MMCT, a distinct erosive surface is interpreted as representing large-scale marine-based ice sheet advance over most of the Ross Sea paleo-continental shelf. The regional mapping of the seismic stratigraphic architecture and its correlation to drilling data indicate a regional transition through the Miocene from growth of ice caps and inland ice sheets with marine-terminating margins, to widespread marine-based ice sheets extending across the outer continental shelf in the Ross Sea.
Several techniques have been introduced in the last decades for the dehydration and release of O 2 from biogenic silica (opal-A) for oxygen-isotope analysis. However, only one silica standard is universally available: a quartz standard (NBS28) distributed by the IAEA, Vienna. Hence, there is a need for biogenic silica working standards. This paper compares the existing methods of oxygen-isotope analyses of opal-A and aims to characterize additional possible working standards to calibrate the d 18 O values of biogenic silica. For this purpose, an inter-laboratory comparison was organized. Six potential working standard materials were analysed repeatedly against NBS28 by eight participating laboratories using their specific analytical methods. The materials cover a wide range of d 18 O values (+23 to +43 & ) and include diatoms (marine, lacustrine), phytoliths and synthetically-produced hydrous silica. To characterize the proposed standards, chemical analyses and imaging by scanning electron microscopy (SEM) were also performed. Despite procedural differences at each laboratory, all methods are in reasonable agreement with a standard deviation (SD) for d
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.