Abstract. Multi-gate FET, e.g. FinFET devices are the most promising contenders to replace bulk FETs in sub-45 nm CMOS technologies due to their improved sub threshold and short channel behavior, associated with low leakage currents. The introduction of novel gate stack materials (e.g. metal gate, high-k dielectric) and modified device architectures (e.g. fully depleted, undoped fins) affect the analog device properties significantly. First measurements indicate enhanced intrinsic gain (gm/gDS) and promising matching behavior of FinFETs. The resulting benefits regarding the speed-accuracy-power trade-off in analog circuit design will be shown in this work. Additionally novel device specific effects will be discussed. The hysteresis effect caused by charge trapping in high-k dielectrics or self-heating due to the high thermal resistor of the BOX isolation are possible challenges for analog design in these emerging technologies. To gain an early assessment of the impact of such parasitic effects SPICE based models are derived and applied in analog building blocks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.