Abstract-A sequence of partially reflective slots etched into an active ridge waveguide of a 1.5 µm laser structure is found to provide sufficient reflection for lasing. Mirrors based on these reflectors have strong spectral dependence. Two such active mirrors together with an active central section are combined in a Vernier configuration to demonstrate a tunable laser exhibiting 11 discrete modes over a 30 nm tuning range with mode spacing around 400 GHz and side-mode suppression ratio larger than 30 dB. The individual modes can be continuously tuned by up to 1.1 nm by carrier injection and by over 2 nm using thermal effects. These mirrors are suitable as a platform for integration of other optical functions with the laser. This is demonstrated by monolithically integrating a semiconductor optical amplifier with the laser resulting in a maximum channel power of 14.2 dBm from the discrete modes.
This paper outlines the development of a prototype optical burst mode switching network based upon a star topology, the ultimate application of which could be as a transparent payload processor onboard satellite repeaters. The network architecture incorporates multiple tunable laser sources, burst mode receivers and a passive optical router (Arrayed Waveguide Grating). Each tunable optical signal should carry ≥10Gbps and be capable of wavelength switching in c. 5ns timescales. Two monolithic tunable laser types, based upon different technologies, will be utilised: a Slotted Fabry Perot laser (a Fabry Perot laser with slots added in order to introduce controlled cavity perturbations); and a Modulated Grating Y-Branch Laser (MGY: a widely tunable, multi-section device similar to the DBR laser). While the Slotted Fabry Perot laser is expected to achieve the required switching times, it is an immature technology not yet capable of achieving tunability over 80 ITU channels from a single chip. The MGY device is a more mature technology and has full C-band ITU channel coverage, but is not capable of the required short switching times. Hence, in order to facilitate the integration of this more mature technology into the prototype breadboard with the requisite switching time capabilities, a system of 'dual laser' transmitters is being developed to enable data transmission from one MGY laser while the other switches and vice-versa. This work is being performed under ESA contract AO 1-5025/06/NL/PM, Optical Technologies for Ultra -fast Processing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.