We compute the topological entanglement entropy for a large set of lattice models in d-dimensions. It is well known that many such quantum systems can be constructed out of lattice gauge models. For dimensionality higher than two, there are generalizations going beyond gauge theories, which are called higher gauge theories and rely on higher-order generalizations of groups. Our main concern is a large class of d-dimensional quantum systems derived from Abelian higher gauge theories. In this paper, we derive a general formula for the bipartition entanglement entropy for this class of models, and from it we extract both the area law and the sub-leading terms, which explicitly depend on the topology of the entangling surface. We show that the entanglement entropy S A in a sub-region A is proportional to log(GSDÃ), where GSDÃ is the ground state degeneracy of a particular restriction of the full model to A. The quantity GSDÃ can be further divided into a contribution that scales with the size of the boundary ∂A and a term which depends on the topology of ∂A. There is also a topological contribution coming from A itself, that may be non-zero when A has a non-trivial homology. We present some examples and discuss how the topology of A affects the topological entropy. Our formalism allows us to do most of the calculation for arbitrary dimension d. The result is in agreement with entanglement calculations for known topological models.
Two dimensional lattice models such as the quantum double models, which includes the toric code, can be constructed from transfer matrices of lattice gauge theories with discrete gauge groups. These transfer matrices are built out of local operators acting on links, vertices and plaquettes and are parametrized by the center of the gauge group algebra and its dual. For general choices of these parameters the transfer matrix contains operators acting on links which can also be thought of as perturbations to the quantum double model driving it out of its topological phase towards a paramagnetic phase. These perturbations can be thought of as magnetic fields added to the system which destroy the exact solvability of the quantum double model. We modify these transfer matrices with perturbations and extract exactly solvable models which remain in a quantum phase, thus nullifying the effect of the perturbation. The algebra of the modified vertex and plaquette operators now obey a deformed version of the quantum double algebra. The Abelian cases are shown to be in the quantum double phase whereas the non-Abelian phases are shown to be in a modified phase of the corresponding quantum double phase. This is shown by working with the groups Zn and S3 for the Abelian and non-Abelian cases respectively. The quantum phases are determined by studying the excitations of these systems. The fusion rules and the statistics of these anyons indicate the quantum phases of these models. The implementation of these models can possibly improve the use of quantum double models for fault tolerant quantum computation. We then construct theories which arise from transfer matrices that are not the transfer matrices of lattice gauge theories. In particular we show that for the Z2 case this contains the double semion model. More generally for other discrete groups these transfer matrices contain the twisted quantum double models. These transfer matrices can be thought of as being obtained by introducing extra parameters into the transfer matrix of lattice gauge theories. These parameters are central elements belonging to the tensor products of the algebra and its dual and are associated to vertices and volumes of the three dimensional lattice. As in the case of the lattice gauge theories we construct the operators creating the excitations in this case and study their braiding and fusion properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.