We report a compact, scalable, quantum photonic integrated circuit realised by combining multiple, independent InGaAs/GaAs quantum-light-emitting-diodes (QLEDs) with a silicon oxynitride waveguide circuit. Each waveguide joining the circuit can then be excited by a separate, independently electrically contacted QLED. We show that the emission from neighbouring QLEDs can be independently tuned to degeneracy using the Stark Effect and that the resulting photon streams are indistinguishable. This enables on-chip Hong-Ou-Mandel-type interference, as required for many photonic quantum information processing schemes.
Photonic time-bin qubits are well suited to transmission via optical fibers and waveguide circuits. The states take the form 1 ffiffiffiffi ffi ð2Þ p ðαj0i þ e iϕ βj1iÞ, with j0i and j1i referring to the early and late time bin, respectively. By controlling the phase of a laser driving a spin-flip Raman transition in a single-holecharged InAs quantum dot, we demonstrate complete control over the phase, ϕ. We show that this photon generation process can be performed deterministically, with only a moderate loss in coherence. Finally, we encode different qubits in different energies of the Raman scattered light, paving the way for wavelengthdivision multiplexing at the single-photon level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.