[1] We have studied the mesospheric response to two recent stratospheric warmings by performing short-term forecasts at medium (1.5°) and high (0.5°) spatial resolution under different gravity wave drag (GWD) scenarios. We validated our models with our highaltitude analysis that extends from 0 to 90 km. For the minor warming of January 2008, reduced upper-level orographic GWD weakened the downward residual circulation and cooled the mesosphere. Parameterized nonorographic GWD increased the simulated mesospheric cooling. For the prolonged major warming of 2006, heavily attenuated orographic GWD led to pronounced cooling near 50 km. During the extended phase of this event, an unusually strong westerly polar vortex reformed in the lower mesosphere, which allowed westward propagating nonorographic gravity waves to reach the mesosphere and break, with net westward accelerations of over 50 m s. This, in turn, forced a strong residual circulation, yielding descent velocities over 2 cm s −1 between 65°N and 85°N, consistent with previous reports of enhanced downward transport of trace constituents. The resulting adiabatic heating, as evidenced by the unusually vertically displaced stratopause at 80 km, is likely a direct consequence of this enhanced gravity wave driven descent. High-resolution simulations without parameterized GWD were closer to the analysis than medium-resolution simulations with parameterized orographic GWD only, but still did not fully simulate the mesospheric thermal response. Specifically, the 80 km temperature enhancement was still underestimated in these simulations. This suggests that higher spatial resolution is needed to adequately resolve extratropical gravity wave momentum fluxes.
We present a study of horizontal winds in the mesosphere and lower thermosphere (MLT) during the boreal winters of 2009-2010 and 2012-2013 produced with a new high-altitude numerical weather prediction (NWP) system. This system is based on a modified version of the Navy Global Environmental Model (NAVGEM) with an extended vertical domain up to ∼116 km altitude coupled with a hybrid four-dimensional variational (4DVAR) data assimilation system that assimilates both standard operational meteorological observations in the troposphere and satellite-based observations of temperature, ozone and water vapor in the stratosphere and mesosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.