[1] The Arctic polar vortex exhibited widespread regions of low temperatures during the winter of 2005, resulting in significant ozone depletion by chlorine and bromine species. We show that chemical loss of column ozone (DO 3 ) and the volume of Arctic vortex air cold enough to support the existence of polar stratospheric clouds (V PSC ) both exceed levels found for any other Arctic winter during the past 40 years. Cold conditions and ozone loss in the lowermost Arctic stratosphere (e.g., between potential temperatures of 360 to 400 K) were particularly unusual compared to previous years. Measurements indicate DO 3 = 121 ± 20 DU and that DO 3 versus V PSC lies along an extension of the compact, near linear relation observed for previous Arctic winters. The maximum value of V PSC during five to ten year intervals exhibits a steady, monotonic increase over the past four decades, indicating that the coldest Arctic winters have become significantly colder, and hence are more conducive to ozone depletion by anthropogenic halogens.
Derived Meteorological Products (DMPs, including potential temperature, potential vorticity (PV), equivalent latitude (EqL), horizontal winds and tropopause locations) from several meteorological analyses have been produced for the locations and times of measurements taken by several solar occultation instruments and the Aura Microwave Limb Sounder (MLS). MLS and solar occultation data are analyzed using DMPs to illustrate sampling issues that may affect interpretation and comparison of data sets with diverse sampling patterns and to provide guidance regarding the kinds of studies that benefit most from analyzing satellite data in relation to meteorological conditions using the DMPs. Using EqL or PV as a vortex‐centered coordinate does not alleviate all sampling problems, including those in studies using “vortex averages” of solar occultation data and in analyses of localized features (such as polar stratospheric clouds) and other fields that do not correlate well with PV. Using DMPs to view measurements with respect to their air mass characteristics is particularly valuable in studies of transport of long‐lived trace gases, polar processing in the winter lower stratosphere, and distributions and transport of O3 and other trace gases from the upper troposphere through the lower stratosphere. The comparisons shown here demonstrate good agreement between MLS and solar occultation data for O3, N2O, H2O, HNO3, and HCl; small biases are attributable to sampling effects or are consistent with detailed validation results presented elsewhere in this special section. The DMPs are valuable for many scientific studies and to facilitate validation of noncoincident measurements.
[1] We have studied the mesospheric response to two recent stratospheric warmings by performing short-term forecasts at medium (1.5°) and high (0.5°) spatial resolution under different gravity wave drag (GWD) scenarios. We validated our models with our highaltitude analysis that extends from 0 to 90 km. For the minor warming of January 2008, reduced upper-level orographic GWD weakened the downward residual circulation and cooled the mesosphere. Parameterized nonorographic GWD increased the simulated mesospheric cooling. For the prolonged major warming of 2006, heavily attenuated orographic GWD led to pronounced cooling near 50 km. During the extended phase of this event, an unusually strong westerly polar vortex reformed in the lower mesosphere, which allowed westward propagating nonorographic gravity waves to reach the mesosphere and break, with net westward accelerations of over 50 m s. This, in turn, forced a strong residual circulation, yielding descent velocities over 2 cm s −1 between 65°N and 85°N, consistent with previous reports of enhanced downward transport of trace constituents. The resulting adiabatic heating, as evidenced by the unusually vertically displaced stratopause at 80 km, is likely a direct consequence of this enhanced gravity wave driven descent. High-resolution simulations without parameterized GWD were closer to the analysis than medium-resolution simulations with parameterized orographic GWD only, but still did not fully simulate the mesospheric thermal response. Specifically, the 80 km temperature enhancement was still underestimated in these simulations. This suggests that higher spatial resolution is needed to adequately resolve extratropical gravity wave momentum fluxes.
Earth Observing System Microwave Limb Sounder O3 and N2O are used to examine transport and chemical O3 loss in the unusually cold 2004–2005 Arctic winter. The vortex was dynamically active, with episodic mixing events throughout the winter; descent was the dominant transport process only through late January. Before the onset of lower stratospheric chemical loss, O3 was higher near the vortex edge than in the vortex core, causing different effects of mixing depending on the vortex region and time, either masking or mimicking chemical loss. O3 loss ceased by 10 March because of an early final warming. Rough estimates suggest maximum vortex‐averaged O3 loss of 1.2–1.5 ppmv between 450 and 500 K, with up to ∼2 ppmv loss in the outer vortex near 500 K. Despite record cold, chemical O3 loss was less in 2004–2005 than in previous cold Arctic winters.
The ozone profile records of a large number of limb and occultation satellite instruments are widely used to address several key questions in ozone research. Further progress in some domains depends on a more detailed understanding of these data sets, especially of their long-term stability and their mutual consistency. To this end, we made a systematic assessment of 14 limb and occultation sounders that, together, provide more than three decades of global ozone profile measurements. In particular, we considered the latest operational Level-2 records by SAGE II, SAGE III, HALOE, UARS MLS, Aura MLS, POAM II, POAM III, OSIRIS, SMR, GOMOS, MIPAS, SCIAMACHY, ACE-FTS and MAESTRO. Central to our work is a consistent and robust analysis of the comparisons against the ground-based ozonesonde and stratospheric ozone lidar networks. It allowed us to investigate, from the troposphere up to the stratopause, the following main aspects of satellite data quality: long-term stability, overall bias and short-term variability , together with their dependence on geophysical parameters and profile representation. In addition, it permitted us to quantify the overall consistency between the ozone profilers. Generally, we found that between 20 and 40 km the satellite ozone measurement biases are smaller than ±5 %, the short-term variabilities are less than 5-12 % and the drifts are at most ±5 % decade −1 (or even ±3 % decade −1 for a few records). The agreement with ground-based data degrades somewhat towards the stratopause and especially towards the tropopause where natural variability and low ozone abundances impede a more precise analysis. In part of the stratosphere a few records deviate from the preceding general conclusions ; we identified biases of 10 % and more (POAM II and SCIAMACHY), markedly higher single-profile variability (SMR and SCIAMACHY) and significant long-term drifts (SCIAMACHY, OSIRIS, HALOE and possibly GO-MOS and SMR as well). Furthermore, we reflected on the repercussions of our findings for the construction, analysis and interpretation of merged data records. Most notably, the discrepancies between several recent ozone profile trend assessments can be mostly explained by instrumental drift. This clearly demonstrates the need for systematic comprehensive multi-instrument comparison analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.