Consumer interest in the source of their food, its environmental footprint, and the impact of diet on health has supported the growth of the grass-finished beef (GFB) industry. Studies have concluded that GFB has distinct nutritional differences from conventionally-finished beef. As the GFB industry continues to expand, it is vital to continue to explore the nutritional complexities and variation in the product. To achieve this, a survey of grass-finishing production systems throughout the USA was conducted, and beef finished on the participating farms was analyzed for its nutritional composition, including fatty acid (FA), mineral and fat-soluble vitamin contents. Samples were analyzed from 12 producers and annual production capacity of farms ranged from 25 to 5,000 cattle, with a mean age of cattle at harvest of 26.8 ± 2.30 mo. An array of finishing diets included grazing exclusively in perennial pasture, incorporating annual forage crops, and feeding a variety of harvested forages with supplementation of non-starch feed byproducts. Beef muscle tissue FA content was analyzed by gas chromatography-mass spectrometry (GC–MS). The mean ratio of omega-6 (n-6) to omega-3 (n-3) FA in samples varied significantly by producer, ranging from 1.80 to 28.3 (P < 0.0001), with an overall sample set median of 4.10. A selection of minerals including iron, magnesium, and potassium were analyzed by ICP emission spectroscopy and mineral content significantly differed by producer for all minerals (P < 0.001). Mean α-tocopherol and β-carotene content was 610.6 µg/100 g beef and 32.2 µg/100 g, respectively. The amount of these antioxidants also varied between producers (P < 0.0001), but tended to be greater in beef finished solely on fresh forages. This survey indicates that commercially available GFB can vary in nutritional composition due to the diverse practices used to grass-finish cattle.
A 2-yr study was conducted to evaluate the effects of beef genotypes and feeding systems on performance, carcass traits, meat quality, and sensory attributes. A 2×2 factorial experiment was used to randomly allocate 60 steers in year 1 (YR1) and 44 steers in year 2 (YR2). The two beef genotypes evaluated were Red Angus (RA), and RA x Akaushi (AK) crossbreed. The steers were allotted to two finishing feeding systems: grazing, a multi-species forage mixture (GRASS) and feedlot finishing, conventional total mixed ration (GRAIN). All steers were slaughtered on the same day, at 26 and 18 mo of age (GRASS and GRAIN, respectively), and carcass data were collected 48 h postmortem. Growth and slaughter characteristics were significantly impacted by the finishing system (P < 0.01), with the best results presented by GRAIN. Beef genotype affected dressing percent (P < 0.01), ribeye area (P = 0.04), and marbling score (P = 0.01). The AK steers had a tendency (P = 0.09) for lower total gain; however, carcass quality scores were greater compared to RA. There was a genotype by system interaction for USDA yield grade (P < 0.01), where it was lower in GRASS compared to GRAIN in both genotypes, and no difference was observed between the two genotypes for any GRASS or GRAIN systems. There was no difference in meat quality or sensory attributes (P > 0.10) between the two genotypes, except that steaks from AK tended to be juicier than RA (P = 0.06). Thawing loss and color variables were impacted by the finishing system (P < 0.01). L* (lightness) and hue angle presented greater values while a* (redness), b* (yellowness), and chroma presented lower values in GRAIN compared to GRASS. Sensory attributes were scored better in GRAIN than GRASS beef (P < 0.01). There was a genotype by system interaction for flavor (P = 0.02), where beef from RA had a lower flavor rating in GRASS than in GRAIN, and no difference was observed for AK. Within each system, no difference was observed for flavor between RA and AK. Beef from steers in GRASS had greater (P < 0.01) WBSF than those from GRAIN. These results indicate that steers from GRAIN had superior performance and carcass merit and that AK enhanced these traits to a greater degree compared to RA. Furthermore, the beef finishing system had a marked impact on the steaks’ sensory attributes and consumer acceptability. The favorable results for texture and juiciness in GRAIN, which likely impacted overall acceptability, may be related to high marbling.
Tail tip injuries occur in some feedlot cattle housed in slatted-floor facilities typically found in the midwestern United States. The practice of tail docking cattle on entry into these feedlot facilities was initiated to prevent tail injuries. Tail docking is a welfare concern from the standpoint that an important method of fly avoidance is removed and the tail docking procedure is painful and often excludes local anesthesia or extended analgesia. The primary objective of this study was to describe the behavioral responses of feedlot cattle following tail docking. Thirty-six heifers were randomly assigned to 1 of 2 treatment groups: docked (DK) or control (CN). All calves received an epidural following surgical preparation of the sacrococcygeal area and postoperative intravenous flunixin meglumine. A portion of the tail of DK calves was removed using pruning shears. An elastrator band was placed near the tail tip for hemostasis and tail tips were sprayed with fly spray. IceQube accelerometers collected step counts, motion index, lying time, lying bouts, and lying bout duration during d -4 through 13. Direct observations of cattle behavior were performed on d 0, 1, and 2. Step counts of DK calves were increased (P < 0.05) on d 0, 2, 3, 4, 6, 9, 10, and 13, and motion index of DK calves was also increased (P < 0.05) on d 0, 3, 4, 9, 10, 11, and 13. Docked cattle performed rear foot stomp behavior more (P < 0.001) than CN on d 0, 1, and 2. Forty-eight hours after tail docking, DK calves had increased lying bouts per hour (1.7 vs. 0.9 on d 0; P < 0.001; 1.1 vs. 0.8 on d 1; P < 0.01) but reduced lying bout durations (12.6 vs. 47.1 min on d 0; P < 0.001; 22.6 vs. 44.7 min on d 1; P < 0.001). On d 0, DK calves twitched tails more (P < 0.05) and ruminated less (P < 0.001). Despite provision of perioperative and postoperative analgesia, we identified altered behavior in DK cattle that may reflect a compromised welfare state for tail-docked feedlot cattle. We recommend that alternative strategies to reduce tail tip injury be explored.
Cattle diet and breed modify the nutritional profile of beef. The objective of this study was to compare the fatty acid (FA) and micronutrient profiles of Red Angus (RA) and RA x Akaushi (AK) crossbreed steers fed either a grass or grain diet. This two-year study randomly assigned steers to the diets using a 2 × 2 factorial experiment. FAs and micronutrients were analyzed. Diet effect was the strongest with grass-finished beef being higher in n-3 polyunsaturated FAs (p < 0.001), conjugated linoleic acid (p < 0.05), vaccenic acid (p < 0.05), iron (p < 0.001), and vitamin E (p < 0.001) compared to grain-finished beef. Breed effects were observed for lauric and myristic acids (p < 0.05), selenium (p < 0.05), and zinc (p < 0.01) with AK containing more of these compounds than RA. Diet × breed effects were non-existent. These results indicate that diet has a stronger influence than breed on modifying the nutritional profile of beef. Because of a more favorable FA and antioxidant profile, consumption of grass-finished beef could benefit human health.
Science-based guidance employed at eight small and very small state and federally inspected ready-to-eat (RTE) meat and poultry processors across Michigan was assessed. Data was collected to determine the current level of sanitary control methods used for reducing Listeria in the processing environment and compared interactions with the facility microbial results. A checklist was created to assess the current recommended sanitary control methods from the U.S. Department of Agriculture; U.S. Food and Drug Administration; and the Michigan Department of Agriculture and Rural Development. The checklist, comprised of 178 items divided into ten general content domains, was used to assess which of the recommended controls were being utilized in the facilities to prevent post lethality contamination of RTE products . Effectiveness of pre-operational and operational sanitation was assessed through sampling 12 non-food contact surfaces using an adenosine triphosphate (ATP) reader and amplified nucleic single temperature reaction test for Listeria spp., including Listeria monocytogenes at each facility. In total, 288 samples were taken collectively from the 8 facilities (96 ATP, 96 pre-operational Listeria spp.). Microbial outcomes did not differ ( P > 0.05 ) based on the overall number of recommended sanitary control methods utilized and type of facility inspection. There was a greater content domain compliance overall in operational sanitation ( P = 0.0005), sanitation ( P = 0.0030), facility ( P = 0.0397) and personal hygiene ( P = 0.0033 ) than for segregation procedures regardless of the regulating body. Findings suggest that regardless of the regulating body, the quality of sanitary control measures utilized is more impactful for microbial control than simply the quantity implemented. Pathogen control may be obtained without implementing all of the sanitary control methods within the guidance documents.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.