Consumer interest in the source of their food, its environmental footprint, and the impact of diet on health has supported the growth of the grass-finished beef (GFB) industry. Studies have concluded that GFB has distinct nutritional differences from conventionally-finished beef. As the GFB industry continues to expand, it is vital to continue to explore the nutritional complexities and variation in the product. To achieve this, a survey of grass-finishing production systems throughout the USA was conducted, and beef finished on the participating farms was analyzed for its nutritional composition, including fatty acid (FA), mineral and fat-soluble vitamin contents. Samples were analyzed from 12 producers and annual production capacity of farms ranged from 25 to 5,000 cattle, with a mean age of cattle at harvest of 26.8 ± 2.30 mo. An array of finishing diets included grazing exclusively in perennial pasture, incorporating annual forage crops, and feeding a variety of harvested forages with supplementation of non-starch feed byproducts. Beef muscle tissue FA content was analyzed by gas chromatography-mass spectrometry (GC–MS). The mean ratio of omega-6 (n-6) to omega-3 (n-3) FA in samples varied significantly by producer, ranging from 1.80 to 28.3 (P < 0.0001), with an overall sample set median of 4.10. A selection of minerals including iron, magnesium, and potassium were analyzed by ICP emission spectroscopy and mineral content significantly differed by producer for all minerals (P < 0.001). Mean α-tocopherol and β-carotene content was 610.6 µg/100 g beef and 32.2 µg/100 g, respectively. The amount of these antioxidants also varied between producers (P < 0.0001), but tended to be greater in beef finished solely on fresh forages. This survey indicates that commercially available GFB can vary in nutritional composition due to the diverse practices used to grass-finish cattle.
Obesity dysregulates B cell populations, which contributes toward poor immunological outcomes. We previously reported that differing B cell subsets are lowered in the bone marrow of obese male mice. Here, we focused on how lipid metabolites synthesized from docosahexaenoic acid (DHA) known as specialized pro‐resolving lipid mediators (SPMs) influence specific B cell populations in obese male mice. Metabololipidomics revealed that splenic SPM precursors 14‐hydroxydocosahexaenoic acid (14‐HDHA), 17‐hydroxydocosahexaenoic acid (17‐HDHA), and downstream protectin DX (PDX) were decreased in obese male C57BL/6J mice. Simultaneous administration of these mediators to obese mice rescued major decrements in bone marrow B cells, modest impairments in the spleen, and circulating IgG2c, which is pro‐inflammatory in obesity. In vitro studies with B cells, flow cytometry experiments with ALOX5−/− mice, and lipidomic analyses revealed the lowering of 14‐HDHA/17‐HDHA/PDX and dysregulation of B cell populations in obesity was driven indirectly via B cell extrinsic mechanisms. Notably, the lowering of lipid mediators was associated with an increase in the abundance of n‐6 polyunsaturated fatty acids, which have a high affinity for SPM‐generating enzymes. Subsequent experiments revealed female obese mice generally maintained the levels of SPM precursors, B cell subsets, and antibody levels. Finally, obese human females had increased circulating plasma cells accompanied by ex vivo B cell TNFα and IL‐10 secretion. Collectively, the data demonstrate that DHA‐derived mediators of the SPM pathway control the number of B cell subsets and pro‐inflammatory antibody levels in obese male but not female mice through a defect that is extrinsic to B cells.
In Northern Ghana, 33% of children are stunted due to economic disparities. Dietary fatty acids (FA) are critical for growth, but whether blood FA levels are adequate in Ghanaian children is unknown. The objective of this study was to determine the association between whole blood FAs and growth parameters in Northern Ghanaian children 2–6 years of age. A drop of blood was collected on an antioxidant treated card and analyzed for FA composition. Weight and height were measured and z-scores were calculated. Relationships between FAs and growth parameters were analyzed by Spearman correlations, linear regressions, and factor analysis. Of the 307 children who participated, 29.7% were stunted and 8% were essential FA deficient (triene/tetraene ratio>0.02). Essential FA did not differ between stunted and non-stunted children and was not associated with height-for-age z-score (HAZ) or weight-for-age z-score (WAZ). In hemoglobin adjusted regression models, both HAZ and WAZ were positively associated with arachidonic acid (p≤0.01), dihomo-gamma-linolenic acid (DGLA, p≤0.05), docosatetraenoic acid (p≤0.01) and the ratio of DGLA/linoleic acid (p≤0.01). These data add to the growing body of evidence indicating n-6 FAs are critical in childhood linear growth. Our findings provide new insights into the health status of an understudied Northern Ghanaian population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.