In an effort to seek further understanding of lower limb muscle function in the rowing movement, an electromyographic analysis was undertaken of rowers rowing on a Gjessing ergometer. A strain gauged transducer was inserted in the ergometer linkage between handle and flywheel to detect pulling force. Electrodes were placed on the following lower limb muscles: gluteus maximus, biceps femoris, rectus femoris, vastus lateralis, gastrocnemius, and tibialis anterior. Linear envelope electromyograms from each muscle and the force signals were sampled synchronously at 50 Hz. The results indicated that all six muscles were active from catch to finish of the drive phase. Biceps femoris, gluteus maximus, gastrocnemius, and vastus lateralis all began their activity at or just prior to catch and reached maximal excitation near peak force of the stroke. Rectus femoris and tibialis anterior activity began prior to the catch and reached maximal excitation subsequent to peak force. The coactivation of the five leg muscles, of which four were biarticular, included potentially antagonistic actions that would cancel each other's effects. Clearly, however, other explanations must be considered. Both gastrocnemius and biceps femoris have been shown to act as knee extensors and may do so in the case of the rowing action. Furthermore, rectus femoris may act with unchanging length as a knee extensor by functioning as a rigid link between the pelvis and tibia. In this manner, energy created by the hip extensors is transferred across the knee joint via the isometrically contracting rectus femoris muscle.The increasing popularity of rowing and advances in technology in this decade have prompted many kinesiological investigations of simulated rowing. Despite numerous physiologically oriented investigations-maximal oxygen consumption abilities, blood lactate levels, muscle biopsies (Hagerman, 1984), and ECG analyses (Larsson, 1980)-biomechanical information about rowing movements is scarce. Moreover, the majority of investigators have focused on quan-
Sixteen healthy male subjects classified as sedentary (8) or active (8), exercised to exhaustion on a bicycle ergometer at a load requiring 70% of their maximal aerobic capacity. Biopsy samples of the vastus lateralis muscle were taken at rest and at the time of fatigue. A 12 week training program increased skeletal muscle glycogen content and branching enzyme activities twofold. The exhaustive submaximal exercise reduced the glycogen levels of the trained group to values similar to the fatigue levels of the non-trained subjects. Skeletal muscle glycogen branching enzyme activities decreased with submaximal exercise to fatigue in all groups. Maximal exercise to fatigue resulted in small increases in the activities of the enzyme. The results of the present study and a previous study (Taylor et al. 1972. Can. J. Physiol. Pharmacol. 50, 411–415) indicate that the activities of the glycogen synthesizing enzymes are highly correlated with the skeletal muscle resting glycogen concentration and the relative fitness of the subjects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.