Granzyme B (GrB) is the prototypic member of a serine protease family primarily used by cytotoxic lymphocytes to kill target cells. We report here that, by immunohistochemical staining of paraffin-embedded tumour sections, GrB protein was unexpectedly detected in malignant cells of a subset of breast cancers and their adjacent reactive endothelial and mesenchymal cells in which endogenous retinoblastoma protein (pRB) is overexpressed. The identity of the endogenous GrB was further confirmed experimentally in RB-deficient breast carcinoma cell culture upon overexpression of ectopic pRB. Our finding extends the recent paradigm-shifting trend for a more diverse biological role of granzyme B, and might provide a rational basis for exploring its potential prognostic value in a variety of human cancers.
Neuronal differentiation in the mammalian CNS is driven by multiple events. When treated with retinoic acid (RA), hNTera-2 (NT-2) cells undergo postmitotic neuronal differentiation. Here, we show that a prolonged exposure of NT-2 cells with non-cytotoxic doses of genistein, a protein tyrosine kinase (PTK) inhibitor, induced differentiation of NT-2 cells. Additionally, genistein enhanced RA-induced neuronal differentiation by increasing the activation of extracellular signal-related kinase 1/2 (ERK1/2) via phosphorylation at Thr183 and Tyr185 in 3-7 days. Meanwhile, genistein also upregulated N-cadherin and p21 (a Cdk inhibitor), but downregulated proliferating cell nuclear antigen protein (PCNA). MEK1/2 inhibitors, such as PD98059 and U0126, reduced RA-induced ERK1/2 activity, but could not block the genistein effects. Our observations indicate that genistein-induced neuronal differentiation is not dependent of the MEK-ERK signaling cascade. Instead, genistein-upregulated ERK activation is likely due to this chemical's direct effect on chromosome and gene transcription, rather than its inhibition on tyrosine kinases. Failure of inhibition of ERK1/2 activation by the MEK1/2 inhibitors PD98059 and U0126 suggests presence of an unknown activator for ERK1/2 in neuronal cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.