Objective: The objective of the present study was to formulate and evaluate the floating in-situ gelling system of diltiazem hydrochloride.Methods: Sodium alginate based diltiazem hydrochloride floating in situ gelling systems were prepared by dissolving hydroxyl propyl methyl cellulose (HPMC) in 25% of water, to which calcium carbonate and diltiazem hydrochloride were added with stirring to form, a proper and a homogenous dispersion of diltiazem hydrochloride. Meanwhile, 30% of water was heated to 60 ˚C on a hot plate to dissolve sodium alginate and cooled to 40 ˚C. The resulting solution was added to HPMC solution and mixed well. To 5% of water at 60 ˚C, sodium methyl paraben was added and dissolved and cooled to 40 ˚C and was added to the above mixture and mixed well. The volume was adjusted finally to 100% with distilled water. Prepared formulae were evaluated for physicochemical properties, drug content, pH, in vitro gelling capacity, in vitro buoyancy, viscosity, water uptake and in vitro drug release.Results: Formulation variables such as type and concentration of viscosity enhancing polymer (sodium alginate) and HPMC affected the formulation viscosity, gelling properties, floating behavior, and in vitro drug release. Formulation F5 and F6 showed the floating time of 5 min and more than 20 h respectively. A significant decrease in the rate and extent of the drug release was observed with the increase in polymer concentration in in-situ gelling preparation. Formulation F4, F5, F6 were shown to have extended drug release until the end of 7 h.Conclusion: The prepared in situ gelling formulations of diltiazem hydrochloride could float in the gastric conditions and released the drug in a sustained manner. The present formulation was non-irritant, easy to administer along with good retention properties, better patient compliant and with greater efficacy of the drug.
<p class="Abstract">The natural products are the chemical constituents that are generated from the living organism. The natural products are isolated from the plants, animals, and microorganisms which are used in drug design and drug discovery. Natural product is then modified by chemical synthesis as either total or semi-synthetic way. The natural products show various pharmacological activity which can be used for the treatment of a variety of diseases. Natural products could be regarded as a source of quantifiable and chemically pure known products and also natural products can be utilized as complex mixtures subjected to chemical variability. The present review article adds up the prodrugs from natural products as well as prodrugs developed from the natural products.</p>
Among the natural sources, plant origin drugs constitute around 25% which includes various secondary metabolites such as bioflavonoids, alkaloids, terpenes, saponins, glucosides, and lignans. The bioflavonoids belonging to the polyphenol group shows many beneficial effects like hepatoprotective, antioxidant, antibacterial, anticancer, anti-inflammatory and antiviral. The main objective of this article is to collectively present the research data published worldwide about the anticancer activity of bioflavonoids by loading them in novel formulations. Thus, the present review explored the novel formulations of the bioflavonoids with improved pharmacokinetic properties along with the enhanced anticancer activity. The major drawback with bioflavonoids is its poor solubility and bioavailability, which restricts the usage of bioflavonoids in the treatment of cancer in the market worldwide. Novel drug delivery system seems to possess many benefits like site-specific drug delivery along with minimal side effects and improves pharmaceutical and therapeutic properties of drugs compared to a conventional dosage form of bioflavonoids. The scope for improvement of anticancer activity of bioflavonoids by incorporating in novel pharmaceutical formulations like nanoparticles is very high, and it has to be considered as a potential area of research.
Context: Nature blesses human with a lot of natural products with a wide range of medicinal properties from plants, animals, marine animals, and microorganisms. Among these natural sources, plant origin drugs constitute around 25% which includes various secondary metabolites such as alkaloids, bioflavonoids, terpenes, saponins, glucosides, and lignans. The bioflavonoids belonging to the polyphenol group possess various therapeutic activities such as antioxidant, hepatoprotective, antibacterial, anti-inflammatory, anticancer, and antiviral.Objectives: The main objective of this article is to collectively present the research data published worldwide about the anticancer activity of bioflavonoids by loading them in novel formulations. Thus, the present review explored the novel formulations of the bioflavonoids with improved pharmacokinetic properties along with the enhanced anticancer activity.Methods: A systematic scientific review was made across the peer-reviewed scientific journals and books to collect the data pertaining to areas research related to the application of bioflavonoids for treatment of cancer using novel pharmaceutical formulations.Results: The major drawback with bioflavonoids is its poor solubility and bioavailability, which restricts the usage of bioflavonoids in the treatment of cancer in the market worldwide. Novel drug delivery system seems to possess many benefits like site-specific drug delivery along with minimal side effects and improving its pharmaceutical and therapeutic properties of drugs compared to a conventional dosage form of bioflavonoids.Conclusion: The scope for improvement of anticancer activity of bioflavonoids by incorporating in novel pharmaceutical formulations like nanoparticles is very high, and it has to be considered as a potential area of research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.