Altered release of endothelium-derived relaxing factor/nitric oxide (EDRF/NO) has been proposed as a final common pathway underlying the abnormal vasodilator responses to gram-negative lipopolysaccharide (endotoxin). However, mechanisms responsible for lipopolysaccharide-induced changes in EDRF/NO release from endothelial cells have not been clarified. We evaluated direct effects of Escherichia coli endotoxin on agonist-stimulated cytosolic Ca2+ mobilization and NO biosynthesis in cultured bovine and porcine aortic endothelial cells (ECs). Two methods were used to assay for NO: (1) analysis of NO-induced endothelial levels of cGMP as a biological indicator of NO generation and (2) direct quantitative measurement of NO release (chemiluminescence method). Cytosolic free Ca2+ ([Ca2+]i) was evaluated using fura 2 fluorescence methodology (340/380-nm ratio excitation and 500-nm emission). Incubation of ECs with endotoxin (0.5 microgram/mL, 1 hour plus 1-hour wash) significantly inhibited bradykinin (100 nmol/L)- and ADP (10 mumol/L)-mediated increases in endothelial cell cGMP to 37% and 22% of control responses, respectively. In contrast, endotoxin failed to inhibit the increase in cGMP produced by the non-receptor-dependent Ca2+ ionophore A23187 (1 mumol/L) or sodium nitroprusside (1 mmol/L). Similarly, incubation with endotoxin inhibited ADP-stimulated increases in NO release and EDRF bioactivity to 55% and 56% of control values, respectively, but did not affect A23187-stimulated increases in NO release or EDRF bioactivity. Endotoxin produced significant decreases in both transient and sustained [Ca2+]i responses of ECs to bradykinin and ADP. For example, the initial rapid increase in bovine EC [Ca2+]i in response to bradykinin was reduced to 31% of the initial increases in control cells, and the secondary plateau phase was reduced to only 3% of respective control responses. Concentration-response relation to endotoxin (10(-3)) to 10(0) micrograms/mL) indicated high correlation and similar IC50 values (0.025 and 0.021 micrograms/mL, respectively) for inhibitory effects on cGMP and [Ca2+]i. Endotoxin had no effect on inositol trisphosphate formation ([3H]myo-inositol incorporation) and intracellular Ca2+ release ([Ca2+]i responses in Ca(2+)-free medium) induced by bradykinin. However, agonist-stimulated Mn2+ quenching (index of Ca2+ influx) was significantly attenuated by endotoxin treatment. These studies demonstrate that endotoxin directly decreases agonist (bradykinin and ADP)-mediated biosynthesis and release of EDRF/NO from ECs. These effects can be explained by altered [Ca2+]i mobilization mechanisms, which in turn produce subsequent decreases in activity of the Ca(2+)-calmodulin-dependent constitutive isoform of NO synthase and, ultimately, impairment of agonist-mediated NO release and endothelium-dependent vasodilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.