An aerodynamic investigation of the influence of outlet stator part (vaneless diffuser and return channel) surface roughness on aerodynamic performance of a very low flow coefficient centrifugal stage has been carried out. The stage with design inlet flow coefficient 0.007 was tested within the range of stage Mach number Mu2=0.5–1.1. Then the surface quality of outlet stator part was improved and the tests have been repeated. Aerodynamic performance and losses in both vaneless diffuser and return channel with de-swirl vanes were investigated. The values of isentropic head coefficient increased while those of loss coefficient decreased nearly in the whole range of characteristics in the stage with improved surface quality. The detailed pressure recovery in vaneless diffuser in vicinity of design point measured and calculated by the performance prediction method is compared and discussed. The nonsteady flow phenomena were also investigated. The change of dynamic stability limit by improving of surface quality was observed.
Some results of a research and development program for centrifugal compressors are presented. Six-stage configurations with low flow coefficient were tested. The stages had channel width parameter b2/D2 = 0.01 and 0.03. For each value of the width parameter, three different impellers with inlet hub to outlet diameter ratio do/D2 = 0.3, 0.4, and 0.5 were designed. Test rig, instrumentation, and data analysis are described. Special attention was devoted to probe calibrations and to evaluation of the leakage, bearing, and disk friction losses. Aerodynamic performance of all tested stages is presented. Slip factors of impellers obtained experimentally and theoretically are compared. Losses in both vaneless diffuser and return channel with deswirl vanes are discussed. Rotating stall was also investigated. Criteria for stall limit were tested.
The modifications of meridional form and blade thickness of the impeller of an industrial radial compressor stage (impeller outlet blade angle 32 deg., relative width parameter 0.05) have been designed to extend the operating range of the stage in the area of higher flow rates and to reduce aerodynamic losses in this region. Quasi-3D calculations of the flow pattern in both original and modified impeller flow channels have been carried out to assess the influence of channel form change. The aerodynamic performance of the stage operating with both impellers has been tested on a test rig. The original stage was equipped with varied diffuser only, the modified one was tested with both vaned and vaneless diffusers. Detailed measurements of the flow field behind the impeller outlet have also been carried out. The results of these investigations are presented. Aerodynamic performance and losses in individual flow parts of the stages are compared and discussed.
Some results of a research and development programme for centrifugal compressors are presented. Six stage configurations with low flow coefficient were tested. The stages had channel width parameter bo/D2=0.01 and 0.03. For each value of the width parameter three different impellers with inlet hub to outlet diameter ratio do/D2=0.3, 0.4 and 0.5 were designed. Test rig, instrumentation and data analysis are described. Special attention was devoted to probe calibrations and to evaluation of the leakage, bearing and disc friction losses. Aerodynamic performance of all tested stages is presented. Slip factors of impellers obtained experimentally and theoretically are compared. Losses in both vaneless diffuser and return channel with de-swirl vanes are discussed. Rotating stall was also investigated. Criteria for stall limit were tested.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.