Although water vapour is the main species observed in the coma of comet 67P/Churyumov-Gerasimenko and water is the major constituent of cometary nuclei, limited evidence for exposed water-ice regions on the surface of the nucleus has been found so far. The absence of large regions of exposed water ice seems a common finding on the surfaces of many of the comets observed so far. The nucleus of 67P/Churyumov-Gerasimenko appears to be fairly uniformly coated with dark, dehydrated, refractory and organic-rich material. Here we report the identification at infrared wavelengths of water ice on two debris falls in the Imhotep region of the nucleus. The ice has been exposed on the walls of elevated structures and at the base of the walls. A quantitative derivation of the abundance of ice in these regions indicates the presence of millimetre-sized pure water-ice grains, considerably larger than in all previous observations. Although micrometre-sized water-ice grains are the usual result of vapour recondensation in ice-free layers, the occurrence of millimetre-sized grains of pure ice as observed in the Imhotep debris falls is best explained by grain growth by vapour diffusion in ice-rich layers, or by sintering. As a consequence of these processes, the nucleus can develop an extended and complex coating in which the outer dehydrated crust is superimposed on layers enriched in water ice. The stratigraphy observed on 67P/Churyumov-Gerasimenko is therefore the result of evolutionary processes affecting the uppermost metres of the nucleus and does not necessarily require a global layering to have occurred at the time of the comet's formation.
Carbon dioxide (CO) is one of the most abundant species in cometary nuclei, but because of its high volatility, CO ice is generally only found beneath the surface. We report the infrared spectroscopic identification of a CO ice-rich surface area located in the Anhur region of comet 67P/Churyumov-Gerasimenko. Spectral modeling shows that about 0.1% of the 80- by 60-meter area is CO ice. This exposed ice was observed a short time after the comet exited local winter; following the increased illumination, the CO ice completely disappeared over about 3 weeks. We estimate the mass of the sublimated CO ice and the depth of the eroded surface layer. We interpret the presence of CO ice as the result of the extreme seasonal changes induced by the rotation and orbit of the comet.
Titan's atmosphere is opaque in the near-infrared due to gaseous absorptions, mainly by methane, and scattering by aerosols, except in a few "transparency windows." Thus, the composition of Titan's surface remains difficult to access from space and is still poorly constrained. Photochemical models suggest that most of the organic compounds formed in the atmosphere are heavy enough to condense and build up at the surface in liquid and solid states over geological timescales. Acetylene (C 2 H 2 ) net production in the atmosphere is predicted to be larger than any other compound and C 2 H 2 has been speculated to exist on the surface of Titan. C 2 H 2 was detected as a trace gas sublimated/evaporated from the surface using the Gas Chromatograph Mass Spectrometer after the landing of the Huygens probe. Here we show evidence of C 2 H 2 on the surface of Titan by detecting absorption bands at 1.55 and 4.93 μm using the Cassini Visual and Infrared Mapping Spectrometer at three different equatorial areas-Tui Regio, eastern Shangri La, and Fensal-Aztlan/Quivira. We found that C 2 H 2 is preferentially detected in lowalbedo areas, such as sand dunes and near the Huygens landing site. The specific location of the C 2 H 2 detections suggests that C 2 H 2 is mobilized by surface processes, such as surface weathering by liquids through dissolution/ evaporation processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.