The composition of the fracture surfaces of a composite made up of a polycrystalline organic nonpolymeric filler and a binder composed of a copolymer was studied by XPS. Because the binder and the filler of the composite each have at least one element not in common it is possible to easily distinguish between the binder and filler by XPS. A measure of the relative amounts of binder and filler on the fracture surfaces, therefore, could be made as a function of the sample temperature, T, and the strain rate during fracture. The ratio of filler to binder, F/B, increases with decreasing T at constant strain rate and is least sensitive to strain rate at T's below TG, the quasi static glass transition T. At higher T, F/B increases with strain rate at constant T. These results indicate that as the binder becomes stronger and stiffer due to a decrease in T or an increase in strain rate more of the fracture processes take place in the filler whose properties are expected to be less sensitive to T and strain rate. These results are related to the fracture properties as observed by uniaxial compression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.