Phosphatidate bilayers composed of dilauroylphosphatidate, dimyristoylphosphatidate, dipalmitoylphosphatidate and dioleoylphosphatidate were prepared. Their interaction with AMP deaminase isolated from pig heart was investigated. Dioleoylphosphatidate bilayers were found to exert non-competitive inhibition on the AMP deaminase with a K1 of 15 x 10-6 M. This inhibition is three orders of magnitude stronger than that exerted by orthophosphate. The phosphatidate species containing saturated fatty acids were either non-inhibitory or inhibited enzyme activity rather poorly. However, alkalinization of the medium from pH 6.5 to pH 7.9 led to the inhibition of pig heart AMP deaminase by dilauroylphosphatidate bilayers. This was accompanied by the fluidization of the saturated phosphatidate species, i.e. the lowering of their phase transition temperature in alkaline pH, as measured by light-scattering and fluorescence scans. The possible significance of these findings for the regulation of AMP deaminase activity in vivo by natural membranes is discussed.
Adenylate deaminase (AMP deaminase, EC 3.5.4.6) of a high substrate specificity was purified from pig heart by chromatography on cellulose phosphate. The enzyme shows a co-operative binding of AMP [h (Hill coefficient) 2.35, with SO.5 (half-saturating substrate concentration) 5mM]. ATP and ADP act as positive effectors, lowering h to 1.55 and SO.5 to 1 mM. The addition of liposomes (phospholipid bilayers) to ATP-activated or ADP-activated enzyme causes a further shift of the h value to 1.04 and SO.5 to 0.5 mM. For ATP-activated enzyme the addition of liposomes increases Vmax. by about 100%, and for ADP-activated enzyme by 50%. Liposomes have no effect on the kinetics of AMP deaminase in the absence of ATP and ADP, and neither do they influence the inhibitory effect of orthophosphate on heart muscle AMP deaminase. Metabolic implications of these findings are discussed.
The interaction of pig heart AMP deaminase with different chemical species of phosphatidylcholine and with natural plasma membranes has been investigated. Phospholipids added to the system either as natural biological membranes (plasma membrane vesicles) or in the form of liposomes containing unsaturated phosphatidylcholine considerably enhanced AMP deaminase activity. The secondary structure of pig heart AMP deaminase in the absence and in the presence of dioleoyl phosphatidylcholine and dipalmitoyl phosphatidylcholine liposomes was investigated by Fourier-transform infrared spectroscopy. Quantitative analysis of the amide I band showed that the enzyme contains 45% beta-sheets, 28% alpha-helix, 16% turns and 11% non-ordered structure. In the presence of dioleoyl phosphatidylcholine liposomes, the beta/alpha content ratio decreased; this decrease was dependent on the amount of lipid added. This phenomenon was not observed in the case of dipalmitoyl phosphatidylcholine liposomes. These data suggest a possible role for membrane phospholipids in the regulation of AMP deaminase activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.