Field-aligned currents couple energy between the Earth's magnetosphere and ionosphere and are responsible for driving both micro and macro motions of plasma and neutral atoms in both regimes. These currents are believed to be a contributing energy source for ion acceleration in the polar ionosphere and may be detected via measurements of magnetic gradients along the track of a polar orbiting spacecraft, usually the north-south gradients of the east-west field component. The detection of such gradients does not require observatory class measurements of the geomagnetic field. The Magnetic Field instrument (MGF) measures the local magnetic field onboard the Enhanced Polar Outflow Probe (e-POP) satellite by using two ring-core fluxgate sensors to characterize and remove the stray spacecraft field. The fluxgate sensors have their heritage in the MAGSAT design, are double wound for reduced mass and cross-field dependence, and are mounted on a modest 0.9 m carbon-fiber boom. The MGF samples the magnetic field 160 times per sec (∼ 50 meters) to a resolution
Difficulty in making low noise magnetic measurements is a significant challenge to the use of cube‐satellite (CubeSat) platforms for scientific constellation class missions to study the magnetosphere. Sufficient resolution is required to resolve three‐dimensional spatiotemporal structures of the magnetic field variations accompanying both waves and current systems of the nonuniform plasmas controlling dynamic magnetosphere‐ionosphere coupling. This paper describes the design, validation, and test of a flight‐ready, miniature, low‐mass, low‐power, and low‐magnetic noise boom‐mounted fluxgate magnetometer for CubeSat applications. The miniature instrument achieves a magnetic noise floor of 150–200 pT/√Hz at 1 Hz, consumes 400 mW of power, has a mass of 121 g (sensor and boom), stows on the hull, and deploys on a 60 cm boom from a three‐unit CubeSat reducing the noise from the onboard reaction wheel to less than 1.5 nT at the sensor. The instrument's capabilities will be demonstrated and validated in space in late 2016 following the launch of the University of Alberta Ex‐Alta 1 CubeSat, part of the QB50 constellation mission. We illustrate the potential scientific returns and utility of using a CubeSats carrying such fluxgate magnetometers to constitute a magnetospheric constellation using example data from the low‐Earth orbit European Space Agency Swarm mission. Swarm data reveal significant changes in the spatiotemporal characteristics of the magnetic fields in the coupled magnetosphere‐ionosphere system, even when the spacecraft are separated by only approximately 10 s along track and approximately 1.4° in longitude.
Space-based measurements of the Earth's magnetic field are required to understand the plasma processes responsible for energizing particles in the Van Allen radiation belts and influencing space weather. This paper describes a prototype fluxgate magnetometer instrument developed for the proposed Canadian Space Agency (CSA) Outer Radiation Belt Injection, Transport, Acceleration and Loss Satellite (ORBITALS) mission and which has applications in other space and suborbital applications. The magnetometer is designed to survive and operate in the harsh environment of the Earth's radiation belts and measure low-frequency magnetic waves, the magnetic signatures of current systems, and the static background magnetic field. The new instrument offers improved science data compared to its predecessors through two key design changes: direct digitisation of the sensor and digital feedback combined with analog temperature compensation. These provide an increase in measurement bandwidth up to 450 Hz with the potential to extend to at least 1500 Hz. The instrument can resolve 8 pT on a 65 000 nT field with a magnetic noise of less than 10 pT per square–root Hz at 1 Hz. The prototype instrument was successfully tested and calibrated at the Natural Resources Canada Geomagnetics Laboratory showing that the mostly-digital design matches or exceeds its radiation-soft analog predecessor in sensitivity, noise, frequency range, and RMS accuracy
Abstract. Fluxgate magnetometers are important tools for geophysics and space physics, providing high-precision magnetic field measurements. Fluxgate magnetometer noise performance is typically limited by a ferromagnetic element that is periodically forced into magnetic saturation to modulate, or gate, the local magnetic field. The parameters that control the intrinsic magnetic noise of the ferromagnetic element remain poorly understood. Much of the basic research into producing low-noise fluxgate sensors was completed in the 1960s for military purposes and was never publicly released. Many modern fluxgates depend on legacy Infinetics S1000 ring cores that have been out of production since 1996 and for which there is no published manufacturing process. We present a manufacturing approach that can consistently produce fluxgate ring cores with a noise of ∼6–11 pT per square root hertz – comparable to many of the legacy Infinetics ring cores used worldwide today. As a result, we demonstrate that we have developed the capacity to produce the low-noise ring cores essential for high-quality, science-grade fluxgate instrumentation. This work has also revealed potential avenues for further improving performance, and further research into low-noise magnetic materials and fluxgate magnetometer sensors is underway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.