Spectral absorption and scattering coefficients and spectral scattering phase functions have been derived for partially stabilized zirconia (PS ZrO2) and oxide-bonded silicon carbide (OB SiC) reticulated porous ceramics (RPCs) across the wavelength range 0.4–5.0 μm. These spectral radiative properties were investigated and quantified for 10 ppi (pores/inch), 20 ppi, and 65 ppi materials. Radiative properties were recovered from spectral hemispherical reflectance and transmittance measurements using inverse analysis techniques based upon discrete ordinates radiative models. Two dual-parameter phase functions were investigated for these materials: one based on the physical structure of reticulated porous ceramics and the other a modified Henyey–Greenstein phase function. The modified Henyey–Greenstein phase function provided the most consistent spectral radiative properties. PS ZrO2 radiative properties exhibited strongly spectrally dependent behavior across the wavelength range studied. OB SiC radiative properties exhibited radiative behavior that was relatively independent of wavelength across the wavelength spectrum studied. OB SiC also demonstrated consistently higher absorption coefficients than PS ZrO2 at all wavelengths. Spectral scattering albedos of PS ZrO2 were discovered to be in the range 0.81–0.999 and increased as ppi rating increased, while those for OB Sic were lower in the range 0.55–0.888 and decreased as ppi rating increased. The average extinction efficiencies for 0.4–5.0 μm were discovered to be 1.45 for Ps ZrO2 and 1.70 for OB SiC. Extinction coefficients were discovered to correlate well with geometric optics theoretical models and electromagnetic wave/fiber interaction models based on independent scattering and absorption mechanisms.
A numerical investigation of premixed combustion within a highly porous inert medium is reported. Specifically, results of a numerical model using detailed chemical kinetics and energy exchange between the flowing gas and the porous solid are presented. The current formulation differs from prior models of this type of combustion in that multistep kinetics is used and a better description of the thermophysical properties of the solid is applied in the present model. It was found that the preheating effect increases strongly with increasing convective heat transfer and with increasing effective thermal conductivity of the solid. The convective heat transfer is expected to increase with increasing number of cells per unit length of porous matrix but the absorption coefficient decreases with increasing cell size and decreasing cell density. Numerical simulations using baseline properties indicate that the lean limit can be extended to an equivalence ratio of about 0.36 for a methane–air flame and that the peak flame temperature is generally higher than the adiabatic flame temperature. The latter effect is predicted to be more pronounced at lower equivalence ratios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.