One Sentence Summary: NASA's Magnetospheric Multiscale mission detected fast magnetic reconnection and high-speed electron jets in the Earth's magnetotail.Abstract: Magnetic reconnection is an energy conversion process important in many astrophysical contexts including the Earth's magnetosphere, where the process can be investigated in-situ. Here we present the first encounter of a reconnection site by NASA's Magnetospheric Multiscale (MMS)
We present measurements from the Magnetospheric Multiscale (MMS) mission taken during a reconnection event on the dayside magnetopause which includes a passage through an electron diffusion region (EDR). The four MMS satellites were separated by about 10 km such that estimates of gradients and divergences allow a reasonable estimate of terms in the generalized Ohm's law, which is key to investigating the energy dissipation during reconnection. The strength and character of dissipation mechanisms determines how magnetic energy is released. We show that both electron pressure gradients and electron inertial effects are important, but not the only participants in reconnection near EDRs, since there are residuals of a few mV/m (~30–50%) of E + Ue × B (from the sum of these two terms) during the encounters. These results are compared to a simulation, which exhibits many of the observed features, but where relatively little residual is present.
Highly structured electron distribution functions in the electron diffusion region (EDR) during magnetic reconnection are studied by means of fully kinetic simulations. Four types of structures (striations, arcs, swirls, and rings) in momentum space are analyzed to understand their formation mechanisms. Discrete striations are formed by particles undergoing different numbers of meandering bounces in the EDR and are a result of oscillations in the out-of-plane force on meandering electrons. Predictions for the separation between striations and the triangular shape of the distribution are obtained analytically. Arcs and swirls are due to partial remagnetization of accelerated electrons. Near the end of the outflow jet, electron remagnetization gives rise to the ring structure. Understanding the distribution structures is critical to unraveling the kinetic processes occurring in the EDR and will guide the identification of EDRs based on satellite measurements.
Based on particle‐in‐cell simulations of collisionless magnetic reconnection, the spatiotemporal evolution of electron velocity distributions in the electron diffusion region (EDR) is reported to illustrate how electrons are accelerated and heated. Approximately when the reconnection rate maximizes, electron distributions in the vicinity of the X line exhibit triangular structures with discrete striations and a temperature (Te) twice that of the inflow region. Te increases as the meandering EDR populations mix with inflowing electrons. As the distance from the X line increases within the electron outflow jet, the discrete populations swirl into arcs and gyrotropize by the end of the jet with Te about 3 times that of the X line. Two dominant processes increase Te and produce the spatially and temporally evolving EDR distributions: (1) electric field acceleration preferential to electrons which meander in the EDR for longer times and (2) cyclotron turning by the magnetic field normal to the reconnection layer.
We report Magnetospheric Multiscale observations of electron pressure gradient electric fields near a magnetic reconnection diffusion region using a new technique for extracting 7.5 ms electron moments from the Fast Plasma Investigation. We find that the deviation of the perpendicular electron bulk velocity from
E
×
B
drift in the interval where the out‐of‐plane current density is increasing can be explained by the diamagnetic drift. In the interval where the out‐of‐plane current is transitioning to in‐plane current, the electron momentum equation is not satisfied at 7.5 ms resolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.