This paper studies the overload turnoff failure in the insulated-gate bipolar transistor (IGBT) devices of power multichip modules for railway traction. After a detailed experimental analysis carried out through a dedicated test circuit, electrothermal simulations at device level are also presented. The simulation strategy has consisted in inducing a current and temperature mismatch in two IGBT cells. Results show that mismatches in the electrothermal properties of the IGBT device during transient operation can lead to uneven power dissipation, significantly enhancing the risk of failure and reducing the lifetime of the power module. Concretely, simulations qualitatively demonstrate that localized hot-spot formation due to a dynamic breakdown could lead to a second breakdown mechanism.Index Terms-Insulated-gate bipolar transistor (IGBT) power module, power inverter reliability, railway applications, semiconductor device breakdown, semiconductor device thermal factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.