A bound is obtained for the condition number of a BDDC algorithm for problems posed in H(curl) in two dimensions, where the subdomains are only assumed to be uniform in the sense of Peter Jones. For the primal variable space, a continuity constraint for the tangential average over each interior subdomain edge is imposed. For the averaging operator, a new technique named deluxe scaling is used. Our bound is independent of jumps in the coefficients across the interface between the subdomains and depends only on a few geometric parameters of the decomposition. Numerical results that verify the result are shown, including some with subdomains with fractal edges and others obtained by a mesh partitioner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.