SuperCam is a highly integrated remote-sensing instrumental suite for NASA’s Mars 2020 mission. It consists of a co-aligned combination of Laser-Induced Breakdown Spectroscopy (LIBS), Time-Resolved Raman and Luminescence (TRR/L), Visible and Infrared Spectroscopy (VISIR), together with sound recording (MIC) and high-magnification imaging techniques (RMI). They provide information on the mineralogy, geochemistry and mineral context around the Perseverance Rover.The calibration of this complex suite is a major challenge. Not only does each technique require its own standards or references, their combination also introduces new requirements to obtain optimal scientific output. Elemental composition, molecular vibrational features, fluorescence, morphology and texture provide a full picture of the sample with spectral information that needs to be co-aligned, correlated, and individually calibrated.The resulting hardware includes different kinds of targets, each one covering different needs of the instrument. Standards for imaging calibration, geological samples for mineral identification and chemometric calculations or spectral references to calibrate and evaluate the health of the instrument, are all included in the SuperCam Calibration Target (SCCT). The system also includes a specifically designed assembly in which the samples are mounted. This hardware allows the targets to survive the harsh environmental conditions of the launch, cruise, landing and operation on Mars during the whole mission. Here we summarize the design, development, integration, verification and functional testing of the SCCT. This work includes some key results obtained to verify the scientific outcome of the SuperCam system.
The ExoMars rover, scheduled to be launched in 2020, will be equipped with a novel and diverse payload. It will also include a drill to collect subsurface samples (from 0‐ to 2‐m depth) and deliver them to the rover analytical laboratory, where it will be possible to perform combined science between instruments. For the first time, the exact same sample target areas will be investigated using complementary analytical methods—infrared spectrometry, Raman spectrometry, and laser desorption mass spectrometry—to establish mineralogical and organic chemistry composition. Fundamental for implementing this cooperative science strategy is the Raman Laser Spectrometer (RLS) calibration target (CT). The RLS CT features a polyethylene terephthalate disk used for RLS calibration and verification of the instrument during the mission. In addition, special patterns have been recorded on the RLS CT disk that the other instruments can detect and employ to determine their relative position. In this manner, the RLS CT ensures the spatial correlation between the three analytical laboratory instruments: MicrOmega, RLS, and MOMA. The RLS CT has been subjected to a series of tests to qualify it for space utilization and to characterize its behavior during the mission. The results from the joint work performed by the RLS and MicrOmega instrument teams confirm the feasibility of the “combined science” approach envisioned for ExoMars rover operations, whose science return is optimized when complementing the RLS and MicrOmega joint analysis with the autonomous RLS operation.
In recent years, we are experiencing a digital revolution in many contexts, the digitalization of industry (Industry 4.0), the digitalization of public administrations, the digitalization of people and things (Internet of Things) and, of course, the digitization of cities under the name of Smart Cities. Although the digitization process is based on 3 main pillars: data, talent and innovation. It is necessary to make a mixture of these 3 pillars in different percentages to achieve digitization. In the case of cities, great weight lies in the technology deployed that makes up the architecture of the city. This technology is very incipient and lacks standards that allow interoperability between different devices. This article tries to show a picture of the possible architectures existing today from the point of view of sustainability and energy efficiency.
ExoFit trials are field campaigns financed by ESA to test the Rosalind Franklin rover and to enhance collaboration practices between ExoMars working groups. During the first trial, a replicate of the ExoMars rover was remotely operated from Oxfordshire (United Kingdom) to perform a complex sequence of scientific operation at the Tabernas Desert (Spain). By following the ExoMars Reference Surface Mission (RSM), the rover investigated the Badlands subsoil and collected drill cores, whose analytical study was entrusted to the RLS (Raman Laser Spectrometer) team. The preliminary characterization of core samples was performed in-situ through the RLS Engineering and Qualification Model (EQM-2) and the Raman Demonstrator (RAD1), being this a new, portable emulator of the RLS. In-situ results where then complemented by laboratory analysis using the RLS ExoMars simulator and the commercial version of the Curiosity/CheMin XRD system. Raman data, obtained by closely simulating the operational constraints of the mission, successfully disclosed the mineralogical composition of the samples, reaching the detection of minor/trace phases that were not detected by XRD. More importantly, Raman analysis detected many organic functional groups, proving the presence of extremophile organisms in the arid sub-surface of the Tabernas Desert. In light of the forthcoming ExoMars mission, the results here presented proves that RLS could play a critical role in the characterization of Martian sub-surface environments and in the analytical detection of potential traces of live tracers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.