According to the WHO, the proportion of people over 60 years is increasing and expected to reach 22% of total world's population in 2050. In parallel, recent animal demographic studies have shown that the life expectancy of pet dogs and cats is increasing. Brain aging is associated not only with molecular and morphological changes but also leads to different degrees of behavioral and cognitive dysfunction. Common age-related brain lesions in humans include brain atrophy, neuronal loss, amyloid plaques, cerebrovascular amyloid angiopathy, vascular mineralization, neurofibrillary tangles, meningeal osseous metaplasia, and accumulation of lipofuscin. In aging humans, the most common neurodegenerative disorder is Alzheimer's disease (AD), which progressively impairs cognition, behavior, and quality of life. Pathologic changes comparable to the lesions of AD are described in several other animal species, although their clinical significance and effect on cognitive function are poorly documented. This review describes the commonly reported age-associated neurologic lesions in domestic and laboratory animals and the relationship of these lesions to cognitive dysfunction. Also described are the comparative interspecies similarities and differences to AD and other human neurodegenerative diseases including Parkinson's disease and progressive supranuclear palsy, and the spontaneous and transgenic animal models of these diseases.
A reverse transcriptase polymerase chain reaction (RT-PCR) for the detection of feline coronavirus (FCoV) messenger RNA in peripheral blood mononuclear cells (PBMCs) is described. The assay is evaluated as a diagnostic test for feline infectious peritonitis (FIP). It is based on a well-documented key event in the development of FIP: the replication of virulent FCoV mutants in monocytes/macrophages. To detect most feline coronavirus field strains, the test was designed to amplify subgenomic mRNA of the highly conserved M gene. The test was applied to 1075 feline blood samples (424 from healthy, 651 from sick cats suspected of FIP) and returned 46% of the diseased cats as positive for feline coronavirus mRNA in their peripheral blood cells; of the healthy cats, 5% tested positive. Of a group of 81 animals in which FIP had been confirmed by post-mortem examination, 75 (93%) tested positive, whereas 17 cats with different pathologies (non-FIP cases) all tested negative. In view of the low rate of false-positive results (high specificity) the mRNA RT-PCR may be a valuable addition to the diagnostic arsenal for FIP.
In the aging dog brain lesions develop spontaneously. They share some morphological characteristics with those of Alzheimer 's disease in man. Diffuse and primitive plaques are well known, whereas neuritic plaques rarely develop. Neurofibrillary tangles have not been seen in the canine. The aim of the present investigation was to study major age-related changes of the dog's brain using paraffin sections with respect to cross-immunoreactivity of tau, A beta protein and other immunoreactive components including hydroxynonenal protein, which is a marker for oxidative damage. The occurrence of neurofibrillary tangles and of the protein tau therein was studied in serial brain sections of two dogs with the Gallyas stain and by immunohistochemistry with three different antibodies against tau. Senile plaques were stained with a monoclonal anti-A beta (residues 8-17), polyclonal anti-apolipoprotein E and a monoclonal antibody against 4-hydroxynonenal (HNE). Amyloid deposits and controls were screened by Congo red staining viewed in fluorescent light, followed by polarized light for green birefringence. With the Gallyas stain and one of the antisera against tau, neurofibrillary tangles were revealed in a similar dispersed pattern, whereas the other antitau antisera gave negative results. With the anti-HNE a positive reaction was found in cerebral amyloid deposits and in vascular wall areas where amyloid deposition was confirmed by Congo-red staining, and in perivascular cells and in some neurons. These results indicate that the canine with his tangles and plaques which show oxidative changes, forms a spontaneous modelfor understanding the early changes and their interrelationships in Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.