Listeria monocytogenes, isolated from outbreaks in either human or nonhuman primate populations, was administered orally at doses ranging from 10 6 to 10 10 CFU. Four of 10 treated animals delivered stillborn infants. L. monocytogenes was isolated from fetal tissue, and the pathology was consistent with L. monocytogenes infection as the cause of pregnancy loss. For all pregnancies resulting in stillbirths, L. monocytogenes was isolated from maternal feces, indicating that L. monocytogenes had survived and had probably colonized the gastrointestinal tract. Antibodies and antigen-specific lymphocyte proliferation against Listeria increased in animals that had stillbirths.Listeriosis resulting from exposure to food containing the bacterium L. monocytogenes causes serious disease, with case fatality rates between 20 and 40% (33). Listeriosis is especially serious in susceptible populations such as immunocompromised persons and pregnant women (11,14,16,20,24,26,29,32,35). For healthy nonpregnant adults, listeriosis has a relatively low incidence, presumably due to its low infectivity in immunocompetent individuals.Pregnancy-related listeriosis primarily affects the fetus or neonate. The maternal reaction to the presence of Listeria infection is generally an influenza-like episode with fever, backache, and perhaps diarrhea (7,11,13,24,29). The effect of fetal Listeria infection is dependent on the point in gestation time when infection occurs. First-trimester infection leads to spontaneous abortion, whereas second-and third-trimester infections lead to preterm birth followed by neonatal illness or fetal death with preterm delivery of a stillborn (7,11,13).The rhesus monkey (Macaca mulatta), with a reproductive cycle and placenta comparable to those of humans (31), is widely used as an experimental model for human reproduction and development. As with humans, exposure to L. monocytogenes in pregnant nonhuman primates may result in abortions, stillbirths, or neonatal deaths (4, 27; J. Paul-Murphy, J. E. Markovits, I. Wesley, and J. A. Roberts, Lab. Anim. Sci. 40:547 [abstr.], 1990). For humans and nonhuman primates, the pathogenesis and morphological findings associated with stillbirths due to L. monocytogenes are essentially the same (1,4,28,37).Despite several epidemiological studies confirming the relationship between L. monocytogenes and specific foods (soft cheeses, undercooked chicken, paté, etc.) (2, 30), an infectious dose has not been established for healthy or susceptible human populations due to the delay between exposure and the onset of symptoms. The severe ramifications of the disease in highrisk human populations such as pregnant women precludes the use of humans in volunteer feeding studies. Recently, a draft risk assessment of L. monocytogenes in ready-to-eat foods (36) reviewed human epidemiological and animal study data. The risk assessment concluded that mouse studies provide the only acceptable data for developing dose-response information at this time and acknowledged the difficulty with the use of...
Recent studies have identified and characterized a ring-infected erythrocyte surface antigen (RESA) of the human malaria parasite Plasmodium falciparum with a relative molecular mass (Mr) of approximately 155,000 (refs 1-7). RESA is localized in the micronemes of merozoites and also the membrane of red cells infected with ring-stage parasites. It is thought to be released through the apical pore from the rhoptry at the time of merozoite invasion. Because antibodies directed against this antigen strongly inhibit parasite growth in vitro, RESA may be useful in developing a vaccine against this parasite Here we describe an immunization trial using Aotus monkeys and Escherichia coli-derived fused polypeptides corresponding to various regions of the RESA molecule. Some monkeys in all test groups, but not in the control group, were protected against overwhelming infection. Strikingly, protection correlated with antibody responses to either of two different repetitive sequences in RESA.
Summary.Reference equine antisera to all 47 serotypes of human adenoviruses presently described have been prepared and evaluated by reciprocal neutralization and hemagglutination-inhibition tests. All tests were carried to endpoint dilutions a minimum of five times in each direction to give accurate values for homologous and heterologous antibody titers. Significant cross-reactions in the horse antisera were compared to similar data obtained from rabbit antisera. Using this analysis, major antigenic relationships exist among types 12-18-31 of subgenus A, types 7-11-14 and 34-35 of subgenus B, types
The lymphadenopathy-associated virus (LAV) prototype strain of human T-lymphotropic virus type IIV/LAV was transmitted to juvenile chimpanzees with no prior immunostimulation by (i) intravenous injection of autologous cells infected in vitro, (ii) intravenous injection of cell-free virus, and (iii) transfusion from a previously infected chimpanzee. All five animals that received more than one 50% tissue culture infective dose were persistently infected with LAV or chimpanzee-passaged LAV for up to 18 months. During this time they developed no illnesses, but they exhibited various degrees of inguinal and axillary lymphadenopathy and significant reductions in rates of weight gain. Detailed blood chemistry and hematologic evaluations revealed no consistent abnormalities, with the exception of immunoglobulin G (IgG) hypergammaglobulinemia, which became apparent in one animal 6 months postinfection and continued at more than 1 year postinfection. Transient depressions followed by increases in the numbers of T4 cells to levels greater than normal were observed in all animals after virus inoculation. However, the number of LAV-infected peripheral blood cells decreased with time after infection. Results of enzyme immunoassays showed that all infected animals seroconverted to IgG anti-LAV within 1 month postinfection and that antibody titers remained high throughout the period of observation. In contrast, only three of the five LAV-infected chimpanzees had detectable IgM antibody responses, and these preceded IgG-specific serum antibodies by 1 to 2 weeks. Virus morphologically and serologically identical to LAV was isolated from peripheral blood mononuclear cells of all infected animals at all times tested and from bone marrow cells taken from one animal 8 months after infection. One chimpanzee that was exposed to LAV only by sharing a cage with an infected chimpanzee developed lymphadenopathy and an IgM response to LAV, both of which were transient; however, no persistent IgG antibody response to LAV developed, and no virus was recovered from peripheral blood cells during a year of follow-up. Thus, LAV readily infected chimpanzees following intravenous inoculation and persisted for extended periods despite the presence of high titers of antiviral antibodies. However, the virus was not easily transmitted from infected to uninfected chimpanzees during daily cage contact.
A new strain of mouse hepatitis virus (MHV) was isolated from pooled gut suspensions from an epizootic of lethal enteritis in newborn mice. Negativecontrast electron microscopy showed an abundance of coronavirus particles in the intestinal contents and intestinal epithelium of moribund mice. We found no other virus in the epizootic. Dams seroconverted to MHV polyvalent antigen and to the agent isolated, but did not develop antibodies to other known mouse pathogens. Virus propagated in NCTC-1469 tissue culture produced enteric disease in suckling mice but not fatal diarrhea; the dams of these mice also developed antibodies to MHV and to the isolates. By complement fixation, single radial hemolysis, and quantal neutralization tests, we found the isolates antigenically most closely related to MHV-S, unilaterally related to MHV-JHM, and more distantly related to MHV-1, MHV-3, MHV-A59, and human coronavirus OC-43. We also studied cross-reactions among the murine and human coronaviruses in detail. Tissues of infected newborn mice were examined by light microscopy, thin-section electron microscopy, and frozen-section indirect immunofluorescence, revealing that viral antigen, virus particles, and pathological changes were limited to the intestinal tract. We have designated our isolates as MHV-S/ CDC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.