This paper describes the results of a 3-year study on the prevalence, enterotoxinogenicity and resistance to antimicrobials of S. aureus isolated on dairy farms with small scale production of raw cow milk cheeses. The samples of raw milk, semi-finished products and the final products as well as swabs were collected between 2011 and 2013 from nine dairy farms in Poland. A total of 244 samples were examined, of which 122 (50.0%) were contaminated with S. aureus including 18 of 26 (69.2%) mature cheese samples with log10 CFU g−1 between <1- and 7.41. In swabs collected from the staff and production environment the highest contamination rate with coagulase positive staphylococci (CPS) was detected on hands of cheese makers (4.34 log10 CFU/swab). None of the cheese samples contaminated with CPS contained staphylococcal enterotoxins (SEs). However, 55 of 122 (45.1%) S. aureus isolates possessed SEs genes, mainly (26 of 55; 47.3%) a combination of the sed, sej and ser genes. Furthermore, the sep (15 of 55; 27.3%) as well as seg and sei (9 of 55; 16.4%) genes were also identified. The remaining S. aureus isolates possessed the sea gene (one isolate), the combination of sec, seg and sei (three isolates) as well as the sed, sej, sep and ser markers together (one CPS). Resistance to penicillin (62 of 122 isolates; 50.8%) was the most common among the tested isolates. Some CPS were also resistant to chloramphenicol (7; 5.7%) and tetracycline (5; 4.1%). The obtained results indicated that the analyzed cheeses were safe for consumers. To improve the microbiological quality of traditional cheese products more attention should be paid to animal welfare and hygiene practices during the process of cheese manufacturing in some dairy farms.
Hepatitis E is an important public health problem mostly in developing but occasionally also in industrialized countries. Domestic and wildlife animals are considered reservoirs of the hepatitis E virus (HEV). Since no information on the prevalence of autochthonous HEV infections in human and animal in Poland is available, the aim of the study was to investigate the HEV seroprevalence of different wildlife species as potential virus reservoirs in the country. No HEV antibodies were found in any of the sera collected from the red deer (Cervus elaphus), European bison (Bison bonasus), roe deer (Capreolus capreolus), elk (Alces alces), fallow deer (Dama dama), sika deer (Cervus nippon), Tatra chamois (Rupicapra rupicapra tatrica) or brown bear (Ursus arctos). HEV-specific antibodies were detected in 44.4% (95% CI 38.3-50.7) serum samples originated only from wild boars. The percentage of seropositive wild boars differed significantly between the provinces and was positively correlated with the wild boar density and rurality of the area. This study showed that HEV circulates among wild boar population in Poland, and this species should be considered as an important reservoir of the virus.
Rift Valley fever (RVF) is a zoonotic, vector-borne infectious disease of ruminants and camels transmitted mainly by the Aedes and Culex mosquito species. Contact with the blood or organs of infected animals may infect humans. Its etiological factor is the Rift Valley fever virus (RVFV) of the Phlebovirus genus and Bunyaviridae family. Sheep and goats are most susceptible to infection and newborns and young individuals endure the most severe disease course. High abortion rates and infant mortality are typical for RVF; its clinical signs are high fever, lymphadenitis, nasal and ocular secretions and vomiting. Conventional diagnosis is done by the detection of specific IgM or IgG antibodies and RVFV nucleic acids and by virus isolation. Inactivated and live-attenuated vaccines obtained from virulent RVFV isolates are available for livestock. RVF is endemic in sub-Saharan Africa and the Arabian Peninsula, but in the last two decades, it was also reported in other African regions. Seropositive animals were detected in Turkey, Tunisia and Libya. The wide distribution of competent vectors in non-endemic areas coupled with global climate change threaten to spread RVF transboundarily. The EFSA considers the movement of infected animals and vectors to be other plausible pathways of RVF introduction into Europe. A very low risk both of introduction of the virus through an infected animal or vector and of establishment of the virus, and a moderate risk of its transmission through these means was estimated for Poland. The risk of these specific modes of disease introduction into Europe is rated as very low, but surveillance and response capabilities and cooperation with the proximal endemic regions are recommended.
BackgroundEquid herpesviruses (EHVs) are widespread in equine populations worldwide. While the infection with equine α-herpesviruses (EHV-1 and EHV-4) has been linked to several clinical outcomes, the pathogenic potential for equine γ-herpesviruses (EHV-2 and EHV-5) is still unclear. The objective of the current study was to determine the prevalence of infection with EHVs among Polish horses, to investigate factors associated with EHV infections among horses sampled, and to determine genetic variability within Polish EHV-2 isolates.MethodsVirus-specific real-time PCR assays were used for detection of EHV-1, EHV-2, EHV-4 and EHV-5 in nasal swabs collected from 540 horses from 13 national horse studs located throughout Poland. A proportion of EHV-2/5 positive samples were subjected to virus isolation followed by amplification and analysis of partial glycoprotein B sequence.ResultsOverall, 448/540 (83.0%) horses sampled were positive for at least one virus. The most prevalent was infection with EHV-2 (77.2%), followed by EHV-5 (47.0%), and EHV-4 (0.4%). None of the horses was positive for EHV-1. Approximately half of the virus-infected horses were positive for both EHV-2 and EHV-5. The proportion of EHV-2/5 positive horses varied by age, breed, and season. Only 8.0% of horses sampled, mostly Arabians, showed clinical signs of respiratory disease at the time of sampling. The viral load of both EHV-2 and EHV-5 DNA was highest in swabs from young horses, which was particularly evident for EHV-2 infected foals. Mean viral loads in nasal swabs collected from diseased horses were higher than in swabs from healthy horses. That was also true for EHV-2 when only diseased Arabian foals were considered, but the levels of EHV-5 DNA were lower in swabs from diseased than from healthy foals. In agreement with other studies, there was a considerable variability between Polish EHV-2 sequences, with no clustering of sequences from horses with different health status. The level of EHV-2 variability seemed to differ between different studs/breeds.ConclusionsThe presence of foals and yearlings on a property is likely to increase the risk of active EHV-2/5 infection among in-contact horses. The existence of breed-specific differences in susceptibility to EHV-2/5 infections should be further investigated, as it may provide one variable that needs to be considered in attempts to associate EHV-2/5 infections with disease. Overall, the data presented add to the existing knowledge of the epidemiology and biology of equine γ-herpesviruses, with the long-term goal of better understanding of the pathogenesis and the impact of infections with these viruses on the well-being of the horse.
Summary A total of 74 independently run bioassays with soil incorporated metsulfuron‐methyl from 12 different laboratories was analysed by a logistic dose‐response curve to assess the precision of regression parameters and relate ED50 to soil properties. The potency in terms of ED50 of metsulfuron‐methyl in Brassica rapa L., which was used by all laboratories, varied between 0.05 and 3.9 g a.i. ha‐1. ED50 was negatively correlated with pH and positively correlated with organic matter. The majority of laboratories had ED50 within the interval 0.1‐1.0 g a.i. ha‐1. At one laboratory using three test species, the most sensitive species was Beta vulgaris L. followed by Brassica rapa L. and Lepidium sativum L. The coefficients of variation were smallest for the ED50 and ED90 response levels and largest for the ED10. The slope of the response curves had considerably lower coefficients of variation than the EDs. The results are discussed in relation to a previous collaborative bioassay study. Finally it is suggested that standardization of bioassays with herbicides could be achieved in the same way as standardization of chemical analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.