The quench performance and ramp rate sensitivity of eighteen 5-cm-aperture, 15-m-long SSC dipole magnet prototypes are discussed. All the magnets appear to reach a quench plateau near their extrapolated short sample current limit and well in excess of the operating current with very little training. Most of the magnets, however, exhibit a dramatic degradation of their quench current as a function of ramp rate, which for the most part, can be attributed to large cable eddy currents.
A b s f r a c t -The artificial pinning center (APC) approach to NbTi superconductor fabrication offers the potential benefits of higher current density and lower cost than the conventional process for NbTi, We have been evaluating several approaches for fabricating NbTi via the A P C approach t o determine whether these advantages can be realized in a practical conductor. The study began with the fabrication by several vendors of lOkg size samples which were evaluated a s short samples. This was followed by the scale-up of one process to 150" diameter billets. This material was evaluated first in a solenoid configuration and recently in a one-meter long dipole. We will report here on the results of these coil tests and other characterization results for this new material. We will also describe the plans to continue the scale-up to full size billets and we will discuss the potential cost savings of this approach compared with conventional NbTi fabrication.
This document was prepared as an account of work sponsored by the United States Government. Neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, I_'oduct, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial products process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California and shall not be used for advertising or product endorsement purposes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.