[1] Observations of ozone (O 3 ) and O 3 precursors taken from aircraft flights over Houston, TX, Nashville, TN; New York, NY; Phoenix, AZ, and Philadelphia, PA show that high concentrations of reactive volatile organic compounds (VOCs) in the Houston atmosphere lead to calculated O 3 production rates that are 2 to 5 times higher than in the other 4 cities even though NO x concentrations are comparable. Within the Houston metropolitan area, concentrations of VOCs and O 3 production rates are highest in the Ship Channel region; the location of one of the largest petrochemical complexes in the world. As a consequence the concentration of O 3 in the Houston metropolitan area has recently exceeded 250 ppb, the highest value observed in the U.S within the past 5 years.
Abstract. From about 1500 measurements of ethane in the remote troposphere the longitudinally and vertically averaged latitudinal and seasonal variability of ethane was derived. To improve the data coverage, several data sets from literature were included. There are only very few data sets available for the southern hemisphere. Nevertheless, the uncertainty of the average seasonal/latitudinal ethane profile is estimated to less than 30%. The global annually averaged ethane mixing ratio is 860 ppt. There is a strong interhemispheric gradient with an average north/south ratio of 3.5. Within the northern hemisphere there is an average gradient from the highest annual mean value of 2500 ppt around 65øN to about 600 ppt at the equator. In the southern hemisphere there is only a small gradient at low latitudes and at middle and high southern latitudes no significant gradient can be seen. In both hemispheres a significant seasonal cycle with highest mixing ratios in late winter is observed. The ethane source strength needed to balance the atmospheric budget of ethane is estimated to 15.5 Tg/yr, with most of the emissions in the northern hemisphere. An independent estimate of the sources indicate that most of the emissions are due to natural gas losses (6 Tg/yr) and biomass burning (6.4 Tg/yr). This is also compatible with the latitudinal and seasonal variation of the atmospheric ethane removal rates. However, these estimates have substantial uncertainties and it should be noted that the role of the biosphere for the atmospheric budget of ethane is presently not understood.
Abstract. Measurements of the kinetic isotope effect (KIE) for the reactions of light n-alkanes as well as for several unsaturated hydrocarbons, including alkenes, dienes, benzene, and ethyne with OH-radicals are presented. All measured KIEs are positive; that is, molecules containing only C-12 react faster than the C-13 labeled molecules. However, the KIEs for n-alkanes are quite small; between one and four permil. They can be explained mainly by the mass dependence of the collision frequency between the n-alkanes and OH-radicals. KIEs for the reaction of alkenes with OHradicals are considerably higher. They can be explained by a fractionation of 24.5 + 1.1%o for the addition of an OH-radical to a double bond. Inverse dependence on number of carbon atoms and mass dependence of the collision frequencies explain our observations. For benzene the KIE is slightly higher; for ethyne it is somewhat lower than expected from this simple model. For the reaction of many light nonmethane hydrocarbons (NMHC), especially of unsaturated hydrocarbons, with OH-radicals the KIEs are sufficiently large to have significant impact on the isotopic composition of atmospheric NMHC. A small series of stable carbon isotope ratio measurements of atmospheric NMHC were made in the greater Toronto area. Traffic related NMHC emissions were also studied for their stable carbon isotope ratios. From these data it is possible to quantitatively determine the extent of photochemical processing due to OH-radical reactions that the individual NMHC has experienced. Thus such measurements allow quantitative evaluation of the extent of chemical processing the different NMHC have gone through. This also includes the possibility to differentiate between the impact of local sources and regional or large scale transport. It is shown that in combination with concentration measurements isotope ratio measurements are extremely valuable to study the complex interaction between chemical removal mechanisms, mixing, and dilution processes.
Abstract. The volatile organic compound (VOC) distribution in the Mexico City Metropolitan Area (MCMA) and its evolution as it is uplifted and transported out of the MCMA basin was studied during the 2006 MILAGRO/MIRAGEMex field campaign. The results show that in the morning hours in the city center, the VOC distribution is dominated by non-methane hydrocarbons (NMHCs) but with a substantial contribution from oxygenated volatile organic compounds (OVOCs), predominantly from primary emissions. Alkanes account for a large part of the NMHC distribution in terms of mixing ratios. In terms of reactivity, NMHCs also dominate overall, especially in the morning hours. However, in the afternoon, as the boundary layer lifts and air is mixed and aged within the basin, the distribution changes as secondary products are formed. The WRF-Chem (Weather Research and Forecasting with Chemistry) model and MOZART (Model for Ozone and Related chemical Tracers) were able to approximate the observed MCMA daytime patterns and abCorrespondence to: E. C. Apel (apel@ucar.edu) solute values of the VOC OH reactivity. The MOZART model is also in agreement with observations showing that NMHCs dominate the reactivity distribution except in the afternoon hours. The WRF-Chem and MOZART models showed higher reactivity than the experimental data during the nighttime cycle, perhaps indicating problems with the modeled nighttime boundary layer height.A northeast transport event was studied in which air originating in the MCMA was intercepted aloft with the Department of Energy (DOE) G1 on 18 March and downwind with the National Center for Atmospheric Research (NCAR) C130 one day later on 19 March. A number of identical species measured aboard each aircraft gave insight into the chemical evolution of the plume as it aged and was transported as far as 1000 km downwind; ozone was shown to be photochemically produced in the plume. The WRF-Chem and MOZART models were used to examine the spatial extent and temporal evolution of the plume and to help interpret the observed OH reactivity. The model results generally showed good agreement with experimental results for the total VOC OH reactivity downwind and gave insight into the distributions of VOC chemical classes. A box model with Published by Copernicus Publications on behalf of the European Geosciences Union. 2354 E. C. Apel et al.: Chemical evolution of volatile organic compounds detailed gas phase chemistry (NCAR Master Mechanism), initialized with concentrations observed at one of the ground sites in the MCMA, was used to examine the expected evolution of specific VOCs over a 1-2 day period. The models clearly supported the experimental evidence for NMHC oxidation leading to the formation of OVOCs downwind, which then become the primary fuel for ozone production far away from the MCMA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.