Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.
Composite materials often fail by delamination. As composite materials with tougher matrices are developed to give better delamination resistance, their delamination behavior needs to be fully characterized. In this paper the onset and growth of delamination in AS4/PEEK, a tough thermoplastic matrix composite, was characterized for Mode I and Mode II loadings, using the double-cantilever beam (DCB) and the end-notched flexure (ENF) test specimens, respectively. Delamination growth per fatigue cycle, da/dN, was related to strain energy release rate, G, by means of a power law. However, the exponents of these power laws were too large for them to be adequately used as a life prediction tool. A small error in the estimated applied loads could lead to large errors, at least one order of magnitude, in the delamination growth rates. Hence, strain energy release rate thresholds, Gth, below which no delamination would occur were also measured. Mode I and II threshold G values for no delamination growth were found by monitoring the number of cycles to delamination onset in the DCB and ENF specimens. The maximum applied G for which no delamination growth had occurred until at least 106 cycles was considered the threshold strain energy release rate. The Gth values for both Mode I and Mode II were much less than their corresponding fracture toughnesses. Results show that specimens that had been statically precracked in shear have similar Gth values for Mode I and Mode II for R-ratios of 0.1 and 0.5. An expression was developed which relates Gth and Gc to cyclic delamination growth rate. Comments are given on how testing effects (e.g., facial interference and damage ahead of the delamination front) may invalidate the experimental determination of the constants in the expression.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.