We describe a method for detecting and quantifying time irreversibility in experimental engine data. We apply this method to experimental heat-release measurements from four sparkignited engines under leaning fueling conditions. We demonstrate that the observed behavior is inconsistent with a linear Gaussian random process and is more appropriately described as a noisy nonlinear dynamical process.
SAE routinely stocks printed papers for a period of three years following date of publication. Direct your orders to SAE Customer Sales and Satisfaction Department. Quantity reprint rates can be obtained from the Customer Sales and Satisfaction Department.
Hydrocarbon emissions remain an important concern for the automotive industry due to increasingly strict regulations. In an investigation of possible emission sources within the engine, the concentration of fuel absorbed in the oil film on the cylinder wall of a small internal combustion engine has been measured with laser-induced fluorescence (LIF) spectroscopy. A laser pulse from a nitrogen laser (337.1 nm) provided the excitation, and the fluorescence was monitored with an intensifled-charge-coupled device (ICCD) array mounted to a spectrometer. The excitation laser pulse was launched through a window in the engine head onto a fiber-optic probe mounted flush with the cylinder wall. The laser-excited oil film on the fiber-optic probe produced an LIF signal that was collected by the fiber-optic probe and analyzed for fuel content. The timing of the laser pulse and ICCD gate were controlled in order to synchronize the collection of data with a particular point in the engine cycle. Measurements made in situ, while the engine was running, yield information on the amount of unburned fuel stored in the oil film for various engine conditions. Fuel-in-oil concentrations were determined for various engine temperatures during cold starts, for different fuel enrichment levels, and as a function of the crank angle of the engine cycle. Fuel concentrations as high as 50% were detected during cold starts, and fuel concentrations reached levels greater than 25% for warm engine operation. Changes in the fuel content were also found to be related to enrichment and crank angle.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.