Core Ideas Soil solution sampling is essential to better understand water and solute movement in soils. A review of different types of soil solution samplers is provided in this paper, including: drainage lysimeter or soil column, pan lysimeter, resin bags or membranes, wick lysimeters, suction cup, and suction plate. Recent developments, modifications, and recommendation criteria are provided for selecting appropriate soil solution extraction samplers. A number of contaminants including agrochemicals (fertilizers, pesticides), heavy metals, trace elements, and pathogenic microbes along with pharmaceuticals and hormones used in animal production move through the soil and are responsible for degradation of groundwater quality. Therefore, it is essential to sample soil solution for better understanding of movement and environmental fate of various contaminants in soils. We review different soil solution extraction samplers. The soil solution samplers discussed here are: drainage lysimeter or soil column, pan lysimeter, resin bags or membranes, wick lysimeters, suction cup, and suction plate. We have reviewed 304 journal articles representing a wide array of scientific disciplines. A brief history of soil solution monitoring and terminology used for describing various soil solution samplers is also provided. This review classifies literature on the basis of type of soil solution extraction samplers, soil type, land use–land cover (LULC), and analytes measured. Recommendation criteria are provided for selecting appropriate soil solution extraction samplers based on spatial and temporal variation, cost, soil type, amount of disturbance caused during installation of soil solution samplers, and monitoring of leachates involving different cations, anions, carbon, pH, EC, colloids, pesticides, and microbes. Use of advanced techniques with lysimeters for monitoring soil moisture content, soil water potential and flux is also discussed in this review.
Germination and seedling emergence are the critical stages in the plant life cycle. Insufficient seedling emergence and inappropriate stand establishment are the main constraints in the production of crops which receiving less rainfall. Farmers do not have sufficient resources to meet the requirement of seedbed preparation for sowing and they are at more risk as compared to progressive farmers. On the other hand good establishment increases competitiveness against weeds, increases tolerance to drought period, increase yield and avoids the time consuming need for re-sowing that is costly too. It is well accepted fact that priming improves germination, reduces seedling emergence time and improves stand establishment. A method to improve the rate and uniformity of germination is the priming or physiological advancement of the seed lot. The general purpose of seed priming is to partially hydrate the seed to a point where germination processes are begun, but they would exhibit rapid germination when re-imbibed under normal or stress conditions. A lot of work has been done on seed priming and results of these studies indicate well the importance of priming to get a good crop stand in many crops of tropical region such as rice, maize, sorghum and pigeon pea.
Biochar has received attention due to its potential for mitigating climate change through carbon sequestration in soil and improving soil quality and crop productivity. This study evaluated the effects of rice straw biochar (RSB) and rice husk ash (RHA) each applied at 5 Mg ha−1 and four N levels (0, 40, 80, and 120 kg ha−1) on soil fertility, growth, and yield of rice and wheat for three consecutive rice–wheat rotations. RSB significantly increased electrical conductivity, dehydrogenase activity, and P and K contents when compared to control (no amendment) up to 7.5 cm soil depth. Both RSB and RHA did not influence shoot N concentration in wheat plant but significantly increased P and K concentrations at 60 days after sowing. Grain yields of both rice and wheat were significantly higher in RSB as compared to control (no amendment) and RHA treatments. While the highest grain yields of rice and wheat were observed at 120 kg N ha−1 in RHA and no biochar-treated plots, a significant increase in grain yields was observed at 80 kg N ha−1 in RSB treatment, thereby saving 40 kg N ha−1 in each crop. Both agronomic and recovery N efficiencies in rice and wheat were significantly higher in RSB-amended soil compared to control. Significant positive correlations were observed between soil N, P, and K concentrations and total N, P, and K concentrations in aboveground biomass of wheat at 60 days after sowing. This study showed the potential benefits of applying RSB for improving soil fertility and yields of rice and wheat in a rice–wheat system.
Intensive agriculture has led to generation of a vast volume of agri-residue, prompting a reliance on conservation tillage techniques for prudent management. However, to ascertain the long-term impacts of these practices, the interrelation with the carbon fractions and the biological properties of the soil must be identified. Therefore, in a long-term experiment, five different treatments involving the incorporation of paddy straw as mulch or through disc harrow and farmer practice, including the partial burning of rice straw, were evaluated. After the harvesting of the wheat crop, soil samples collected from 3 different depths (0–15, 15–30 and 30–45 cm) were analyzed for various attributes critical to assessing soil health. Crop residue retention in both seasons (T4) improved carbon fractions, soil microflora viable cell counts and enzyme activities. The principal component analysis (PCA) revealed a positive interaction among the organic carbon, bacterial counts and soil enzyme activities. Thus, a positive impact of conservation tillage techniques involving a minimal disturbance was recorded as improvement in the soil properties, build-up of organic carbon, and wheat productivity in rice–wheat cropping systems.
Rice is grown by different techniques for higher productivity with judicious use of inputs and natural resources. Transplanting of paddy seedlings is common method of crop establishment in the irrigated rice systems of Asia but transplanting is labour intensive (30 persons/ha/day). The preparation of land for transplanting paddy (puddling) consumes about 20-40 % of the total water required for growing of crop and subsequently poses difficulties in seed bed preparation for succeeding wheat crop in rotation. It also promotes the formation of hard pan which effects rooting depth of next crop. So, in this paper discussed the different methods of establishment of rice, sowing of rice in the crop residue of wheat with different tillage systems and use of nitrogen for higher productivity of rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.