For investigating the direct applicability of highly active cobalt containing cathodes on YSZ electrolytes at a lower processing and operating temperature range (T ≤ 650 °C), we fabricated a thin film lanthanum strontium cobalt oxide (LSC) cathode on an yttria stabilised zirconia (YSZ)‐based solid oxide fuel cell (SOFC) via pulsed laser deposition (PLD). Its electrochemical performance (5.9 mW cm–2 at 0.7 V, 650 °C) was significantly inferior to that (595 mW cm–2 at 0.7 V, 650 °C) of an SOFC with a thin (t ∼ 200 nm) gadolinium doped ceria (GDC) buffer layer in between the LSC thin film cathode and the YSZ electrolyte. It implies that even though the cathode processing and cell operating temperatures were strictly controlled not to exceed 650 °C, the direct application of LSC on YSZ should be avoided. The origin of the cell performance deterioration is thoroughly studied by glancing angle X‐ray diffraction (GAXRD) and transmission electron microscopy (TEM), and the decomposition of the cathode and diffusion of La and Sr into YSZ were observed when LSC directly contacted YSZ.
Aims: Research is to identify the bioactive secondary metabolites produced by Aspergillus sp. KMD 901 isolated from marine sediment and to assess their apoptosis‐inducing effects.
Methods and Results: Aspergillus sp. KMD 901 was isolated from marine sediment obtained from the East Sea of Korea. An ethyl acetate extract of KMD 901 exhibited potent cytotoxic activity towards five cancer cell lines (HCT116, AGS, A549, MCF‐7 and HepG2). Sequencing of the internal transcribed spacer (ITS) region in this strain allowed us to identify KMD 901 as a strain of Aspergillus versicolor. The cytotoxic compounds from Aspergillus sp. KMD 901 were purified by reversed‐phase high‐performance liquid chromatography and identified as diketopiperazine disulfides through spectroscopic analyses including extensive 2D NMR and mass spectrometry. The diketopiperazine disulfides were found to induce apoptosis in HCT116 cells based on cell morphology, DNA fragmentation observed by agarose gel electrophoresis, Annexin‐V/PI staining using a flow cytometer and cleavage of poly (ADP‐ribose) polymerase (PARP), caspase‐3, caspase‐8, caspase‐9 and Bcl‐2 family proteins (Bcl‐2, Bcl‐xL and Bax) using Western blotting analysis. Further study using an in vivo xenograft model showed inhibitory effects of acetylapoaranotin (2) on tumour proliferation.
Conclusion: A new diketopiperazine disulfide, deoxyapoaranotin (3), along with previously described acetylaranotin (1) and acetylapoaranotin (2) was separated from Aspergillus sp. KMD 901 and found to have direct cytotoxic and apoptosis‐inducing effects towards HCT116 colon cancer cell lines.
Significance and Impact of the Study: These results suggest that the diketopiperazine disulfides produced from Aspergillus sp., KMD 901, could be candidates for the development of apoptosis‐inducing antitumour agents. Also, this study indicates that marine natural products as potential source of pharmaceuticals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.