Plum pox virus (PPV) is responsible for sharka disease, one of the most detrimental stone fruit diseases affecting Prunus trees worldwide. Only a few apricot cultivars have been described as resistant, most originating from North American breeding programmes. Several PPV resistance quantitative trait loci (QTLs) have been mapped in various progenies, consistently highlighting the contribution to the resistance of the upper part of linkage group 1 (LG1). However, to date, no consensus has been reached on the precise number of QTLs linked to the resistance to PPV in apricot and P. davidiana or on their accurate position on the genetic linkage map. In the present study, the quantitative resistance of cultivar 'Harlayne' was analysed over five growth periods in a large F1 population. Four QTLs were identified, three mapping on LG1, explaining between 5% and 39% of the observed phenotypic variance. In an effort to further this analysis of PPV resistance in apricot, these results were merged in a single QTL meta-analysis with those of five other PPV resistance analyses available in the literature. Three consensus QTL regions were identified on LG1 and a putative fourth region on LG3. QTL meta-analysis also revealed the contribution of each resistant cultivar to metaQTLs, providing interesting comparative data on the resistance factors shared between the resistance sources used in the various studies. Finally, it was shown that one of the metaQTLs co-localizes with the eukaryotic translation initiation factor eIF4E, thus providing new hypotheses on the mechanisms of PPV resistance in apricot.
Plum pox virus (sharka; PPV) can cause severe crop loss in economically important Prunus species such as peach, plum, apricot, and cherry. Of these species, certain apricot cultivars ('Stark Early Orange', 'Goldrich', 'Harlayne') display significant levels of resistance to the disease and are the genetic substrate for studies of several xlaboratories working cooperatively to genetically characterize and mark the resistance locus or loci for marker-assisted breeding. The goals of the work presented in this communication are the characterization of the genetics of PPV resistance in 'Stark Early Orange' and the development of co-dominant molecular markers for marker-assisted selection (MAS) in PPV resistance breeding. We present the first genetic linkage map for an apricot backcross population of 'Stark Early Orange' and the susceptible cultivar 'Vestar' that segregates for resistance to PPV. This map is comprised of 357 loci (330 amplified fragment length polymorphisms (AFLPs), 26 simple sequence repeats (SSRs), and 1 morphological marker for PPV resistance) assigned to eight linkage groups. Twentytwo of the mapped SSRs are shared in common with genetic reference map for Prunus (T × E; Joobeur et al. 1998) and anchor our apricot map to the general Prunus map. A PPV resistance locus was mapped in linkage group 1 and four AFLP markers segregating with the PPV resistance trait, identified through bulk segregant analysis, facilitated the development of SSRs in this region.
Plum pox virus (PPV) is a potyvirus that causes sharka disease in infested stone fruit trees (Prunus species, peach, apricot, plum). In apricots, the resistance is controlled by a major quantitative trait locus that explains up to 70% of the phenotypic variance; it is localised in the upper part of linkage group 1. In this report, we transformed candidate genes that mapped in the region of the apricot resistance locus into polymerase chain reaction markers (SSCP and SSR) and tested for their co-localisation with the major PPV resistance locus in related and unrelated populations. Three populations of F1 and F2 individuals issued from crosses between the PPV-resistant cultivar 'Stark Early Orange' or 'Goldrich' and three susceptible parents were used in this study. Molecular-marker data were collected to determine the linkage relationship between the PPV resistance locus in apricots and markers that target candidate disease-resistance genes. In addition, SSR markers linked to resistance-gene candidates were mapped to positions flanking the PPV resistance locus in different apricot populations. Therefore, we demonstrate that this strategy helps to saturate the major genomic region controlling resistance to PPV in apricot with valuable codominant markers.
Individuals of Apera spica-venti populations tested in this study possess the target-site ALS resistance mutation and an additional so far unknown resistance mechanism(s).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.