We report on the first systematic study of spin transport in bilayer graphene (BLG) as a function of mobility, minimum conductivity, charge density and temperature. The spin relaxation time τ s scales inversely with the mobility µ of BLG samples both at room temperature (RT) and at low temperature (LT). This indicates the importance of D'yakonov -Perel' spin scattering in BLG. Spin relaxation times of up to 2 ns at RT are observed in samples with the lowest mobility. These times are an order of magnitude longer than any values previously reported for single layer graphene (SLG). We discuss the role of intrinsic and extrinsic factors that could lead to the dominance of D'yakonov-Perel' spin scattering in BLG. In comparison to SLG, significant changes in the carrier density dependence of τ s are observed as a function of temperature.
Articles you may be interested inPermalloy and Co50Pd50 as ferromagnetic contacts for magnetoresistance measurements in carbon nanotubebased transport structuresWe report an improved fabrication scheme for carbon based nanospintronic devices and demonstrate the necessity for a careful data analysis to investigate the fundamental physical mechanisms leading to magnetoresistance. The processing with a low-density polymer and an optimised recipe allows us to improve the electrical, magnetic, and structural quality of ferromagnetic Permalloy contacts on lateral carbon nanotube (CNT) quantum dot spin valve devices, with comparable results for thermal and sputter deposition of the material. We show that spintronic nanostructures require an extended data analysis, since the magnetization can affect all characteristic parameters of the conductance features and lead to seemingly anomalous spin transport. In addition, we report measurements on CNT quantum dot spin valves that seem not to be compatible with the orthodox theories for spin transport in such structures. V C 2014 AIP Publishing LLC. [http://dx.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.