We confirm the binary nature of the nearby, very low mass (VLM) system NLTT 33370 with adaptive optics imaging and present resolved near-infrared photometry and integrated light optical and near-infrared spectroscopy to characterize the system. VLT-NaCo and LBTI-LMIRCam images show significant orbital motion between 2013 February and 2013 April. Optical spectra reveal weak, gravity-sensitive alkali lines and strong lithium 6708 Å absorption that indicate the system is younger than field age. VLT-SINFONI near-IR spectra also show weak, gravity-sensitive features and spectral morphology that is consistent with other young VLM dwarfs. We combine the constraints from all age diagnostics to estimate a system age of ∼30-200 Myr. The 1.2-4.7 μm spectral energy distribution of the components point toward T eff = 3200 ± 500 K and T eff = 3100 ± 500 K for NLTT 33370 A and B, respectively. The observed spectra, derived temperatures, and estimated age combine to constrain the component spectral types to the range M6-M8. Evolutionary models predict masses of 97 +41 −48 M Jup and 91 +41 −44 M Jup from the estimated luminosities of the components. KPNO-Phoenix spectra allow us to estimate the systemic radial velocity of the binary. The Galactic kinematics of NLTT 33370AB are broadly consistent with other young stars in the solar neighborhood. However, definitive membership in a young, kinematic group cannot be assigned at this time and further follow-up observations are necessary to fully constrain the system's kinematics. The proximity, age, and late-spectral type of this binary make it very novel and an ideal target for rapid, complete orbit determination. The system is one of only a few model calibration benchmarks at young ages and VLMs.
The recent discovery of an earth-like planet around Proxima Centauri has drawn much attention to this star and its environment. We performed a series of observations of Proxima Centauri using SPHERE, the planet finder instrument installed at the ESO Very Large Telescope UT3, using its near infrared modules, IRDIS and IFS. No planet was directly detected but we set upper limits on the mass up to 7 au exploiting the AMES-COND models. Our IFS observations reveal that no planet more massive than ∼ 6-7 M Jup can be present within 1 au. The dual band imaging camera IRDIS also enables us to probe larger separations than the other techniques like the radial velocity or astrometry. We obtained mass limits of the order of 4 M Jup at separations of 2 au or larger representing the most stringent mass limits at separations larger than 5 au available at the moment. We also did an attempt to estimate the radius of possible planets around Proxima using the reflected light. Since the residual noise for this observations are dominated by photon noise and thermal background, longer exposures in good observing conditions could further improve the achievable contrast limit.
Substellar companions at wide separation around stars hosting planets or brown dwarfs (BDs) yet close enough for their formation in the circumstellar disc are of special interest. In this letter we report the discovery of a wide (projected separation ∼16. 0, or 2400 AU, and position angle 114.61 • ) companion of the GQ Lup A-B system, most likely gravitationally bound to it. A VLT/X-Shooter spectrum shows that this star, 2MASS J15491331-3539118, is a bonafide low-mass (∼0.15 M ) young stellar object (YSO) with stellar and accretion/ejection properties typical of Lupus YSOs of similar mass, and with kinematics consistent with that of the GQ Lup A-B system. A possible scenario for the formation of the triple system is that GQ Lup A and 2MASS J15491331-3539118 formed by fragmentation of a turbulent core in the Lup I filament, while GQ Lup B, the BD companion of GQ Lup A at 0. 7, formed in situ by the fragmentation of the circumprimary disc. The recent discoveries that stars form along cloud filaments would favour the scenario of turbulent fragmentation for the formation of GQ Lup A and 2MASS J15491331-3539118.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.