SINFONI is an adaptive optics assisted near-infrared integral field spectrometer for the ESO VLT. The Adaptive Optics Module (built by the ESO Adaptive Optics Group) is a 60-elements curvature-sensor based system, designed for operations with natural or sodium laser guide stars. The near-infrared integral field spectrometer SPIFFI (built by the Infrared Group of MPE) provides simultaneous spectroscopy of 32 x 32 spatial pixels, and a spectral resolving power of up to 3300. The adaptive optics module is in the phase of integration; the spectrometer is presently tested in the laboratory. We provide an overview of the project, with particular emphasis on the problems encountered in designing and building an adaptive optics assisted spectrometer. 1. SINFONI: ADAPTIVE OPTICS AND INTEGRAL FIELD SPECTROSCOPY SINFONI (SINgle Faint Object Near-IR Investigation) is an adaptive optics assisted near infrared integral field spectrometer mounted to the European Southern Observatory (ESO) VLT (Very Large Telescope). The instrument is a combination ofthe Adaptive Optics module [1], a clone ofMACAO (Multiple Application Curvature Adaptive Optics), developed and built by ESO, and of the near infrared integral field spectrograph SPIFFI (SPectrograph for Infrared Faint Field Imaging) [2], developed and built by the Max-Planck-Institute for extraterrestrial Physics (MPE).Currently, ESO offers two state-of-the-art near infrared instruments at the VLT: ISAAC [3] for seeing limited infrared imaging and spectroscopy, and NAOS/CONICA [4,5] for high order adaptive optics imaging and low-resolution spectroscopy. However, spectroscopy of faint objects with diffraction limited angular resolution at an eight-meter telescope will strongly benefit from a dedicated instrument, which combines the following characteristics: first, diffraction limited observations at near infrared wavelengths, optimized for faint wave-front reference stars and laser guide star operations; second, instantaneous spectroscopy of a two dimensional field with sufficiently high spectral resolution for deep observations between the night sky emission lines.Both partner institutes collected extensive experience with diffraction-limited spectroscopy with their instruments ADONIS/SHARP [6] at the La Silla 3.6 m telescope, and ALFA/3D [7] at the Calar Alto Observatory 3.5 m telescope. Our conclusion is that when observing with adaptive optics, integral field spectroscopy gains significantly over long-slit spectroscopy and Fabry-Perot imaging. The latter suffers significantly from the variation of the sky emission and the point-spread-function (PSF) between consecutive images, and consumes exorbitant observing time for large wavelength coverage. Long-slit spectroscopy, on the other hand, lacks the essential two-dimensional information for decomposing the spatial flux distribution, and loses most ofthe source flux for a diffraction limited slit width and moderate correction of the atmospheric aberrations. In addition, flexure within the instruments complicates the acquisition of...
It is well known that in addition to the longitudinal modulus, viscoelastic liquids show a shear stiffness at sufficiently high probe frequencies due to structural relaxations. For probe frequencies that are large compared to the structural relaxation frequency, the measured elastic longitudinal and shear moduli become so-called clamped properties (c(11)(infinity) and c(44)(infinity), respectively). During freezing or polymerization of amorphous liquids, these clamped moduli behave in a strongly nonlinear fashion as a function of temperature or polymerization time. Based on Brillouin spectroscopy data we will show that there exists a linear relation between c(11)(infinity) and c(44)(infinity) over a large temperature or polymerization time range. Surprisingly, the parameters of this linear relation between the elastic moduli vary only little for different materials. Implications for the nonlinear elastic behavior at the glass transition will be discussed on the basis of mode Gruneisen parameters
Frozen-in trans and gauche conformational disorder of symmetrical difluorotetra-chloroethane (DFTCE) produces the tendency of this plastic crystal to form an orientational glassy state on cooling below Tg=86 K. To throw light upon the freezing mechanism in DFTCE neutron diffraction and Brillouin scattering as well as infrared and dielectric measurements are employed. The overall picture of the results obtained can be characterized in terms of a classical glass-transition process with a relaxation frequency obeying the Vogel-Fulcher law. However, a more sophisticated picture of the freezing process is indicated by a quantitative analysis of the new Brillouin data, e.g. the temperature dependence of the sound velocity. The behaviour could be understood on the basis of a mode-coupling theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.