It is well known that in addition to the longitudinal modulus, viscoelastic liquids show a shear stiffness at sufficiently high probe frequencies due to structural relaxations. For probe frequencies that are large compared to the structural relaxation frequency, the measured elastic longitudinal and shear moduli become so-called clamped properties (c(11)(infinity) and c(44)(infinity), respectively). During freezing or polymerization of amorphous liquids, these clamped moduli behave in a strongly nonlinear fashion as a function of temperature or polymerization time. Based on Brillouin spectroscopy data we will show that there exists a linear relation between c(11)(infinity) and c(44)(infinity) over a large temperature or polymerization time range. Surprisingly, the parameters of this linear relation between the elastic moduli vary only little for different materials. Implications for the nonlinear elastic behavior at the glass transition will be discussed on the basis of mode Gruneisen parameters
General aspects of high performance Brillouin spectroscopy in polymers using special scattering geometries such as 90A-scattering geometry are discussed. Technical improvements are reported resulting in absolute accuracies up to 0.05 % for sound velocity determination. A method of data analysis is presented delivering simultaneously the complete set of elastic stiffness constants. The influence of birefringence on the Brillouin line shifts in anisotropic polymeric systems is estimated and techniques to reduce this influence are proposed. The determination of the principal refractive indices by Brillouin spectroscopy is discussed. Furthermore, a quantity D x, which is sensitive to hypersonic relaxation processes, is introduced.
The temperature and concentration dependence of the refractive index, nD(x, T), in ethanol-water mixtures agrees with previous data in the ethanol-rich concentration range. The refractive index versus concentration x determined at 20 degrees C shows the expected maximum at about 41 mol% water (22 mass% water). The temperature derivative of the refractive index, dnD/dT, shows anomalies at lower water concentrations at about 10 mol% water but no anomaly at 41 mol% water. Both anomalies are related to intermolecular interactions, the one in nD seems to be due to molecular segregation and cluster formation while the origin of the second one in dnD/dT is still not clear.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.