An observation network operating three Wellen Radars (WERAs) in the German Bight, which are part of the Coastal Observing System for Northern and Arctic Seas (COSYNA), is presented in detail. Major consideration is given to expanding the patchy observations over the entire German Bight on a 1-km grid and producing state estimates at intratidal scales, and 6- and 12-h forecasts. This was achieved with the help of the proposed spatiotemporal optimal interpolation (STOI) method, which efficiently uses observations and simulations from a free model run within an analysis window of one or two tidal cycles. In this way the method maximizes the use of available observations and can be considered as a step toward the “best surface current estimate.” The performance of the analysis was investigated based on the achieved reduction of the misfit between model and observations. The complex dynamics of the study domain was illustrated based on the spatial and temporal changes of tidal ellipses for the M2 and M4 constituents from HF radar observations. It was demonstrated that blending observations and numerical modeling facilitates physical interpretation of processes such as the nonlinear distortion of the Kelvin wave in the coastal zone and in particular in front of the Elbe and Weser estuaries. Comparisons with in situ data acquired outside the area covered by the HF radar demonstrated that the analysis method is able to propagate the HF radar information to larger spatial scales.
PURPOSEContrast-enhanced magnetic resonance imaging (MRI) of the central nervous system (CNS) with gadolinium-based contrast agents (GBCAs) is standard of care for CNS imaging and diagnosis because of the visualization of lesions that cause blood–brain barrier breakdown. Gadobutrol is a macrocyclic GBCA with high concentration and high relaxivity. The objective of this study was to compare the safety and efficacy of gadobutrol 1.0 M vs unenhanced imaging and vs the approved macrocyclic agent gadoteridol 0.5 M at a dose of 0.1 mmol/kg bodyweight.MATERIALS AND METHODSProspective, multicenter, double-blind, crossover trial in patients who underwent unenhanced MRI followed by enhanced imaging with gadobutrol or gadoteridol. Three blinded readers assessed the magnetic resonance images. The primary efficacy variables included number of lesions detected, degree of lesion contrast-enhancement, lesion border delineation, and lesion internal morphology.RESULTSOf the 402 treated patients, 390 patients received study drugs. Lesion contrast-enhancement, lesion border delineation, and lesion internal morphology were superior for combined unenhanced/gadobutrol-enhanced imaging vs unenhanced imaging (P < 0.0001 for all). Compared with gadoteridol, gadobutrol was non-inferior for all primary variables and superior for lesion contrast-enhancement, as well as sensitivity and accuracy for detection of malignant disease. The percentage of patients with at least one drug-related adverse event was similar for gadobutrol (10.0%) and gadoteridol (9.7%).CONCLUSIONGadobutrol is an effective and well-tolerated macrocyclic contrast agent for MRI of the CNS. Gadobutrol demonstrates greater contrast-enhancement and improved sensitivity and accuracy for detection of malignant disease than gadoteridol, likely because of its higher relaxivity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.