A field study was conducted to investigate the agronomic performance, nitrogen (N) efficiencies, yield components and yield of rice in Spain for different nitrogen treatments. The experimental variants were six preflood N rates (0, 50, 75, 100, 125 and 150 kg/ha) and three topdressing patterns: (i) non- topdressed, (ii) topdressed with 50 kg N/ha at mid-tillering stage (MT) and (iii) topdressed at panicle initiation stage (PI). The N status of the plant was measured at different growing stages to determine whether a chlorophyll meter would be useful in making N sidedress recommendations. The results showed that grain yield increased with increasing amounts of preflooding N fertilizers up to 100 kg N/ha. The main effect was on panicle number per unit ground area. The effect of additional N supply on yield components and grain yield depended on application timing. Split applications of N did not improve the agronomic efficiency but reduced days to maturity and lodging and increased the harvest index value. Split applications increased grain yield when the total N rate was 150 kg/ha with the second supply at PI. There was a significant but not very good relationship between N content and chlorophyll content (SPAD) values. The regression equation differed significantly depending on growth stage. The SPAD value may determine the need for N topdressing at MT stage, but not at PI. However, the relationship between SPAD value and the rice yield increase from N topdressing application was not very good.
S U M M A R YThe effect of different rates (0-140 kg/ha) of nitrogen fertilizers on soil cyanobacteria and rice crop performance were studied in a rice-cropping system on an alkaline Fluvent soil at Valencia, Spain, during three consecutive crop seasons . The results showed that the rice fields of Valencia favour the development of N 2 -fixing cyanobacteria. Nitrogen fixation varied during the cultivation cycle, reaching its highest values at the maximum tillering stage, 5-6 weeks after sowing, and showed a positive correlation with the abundance of cyanobacteria and a negative correlation with the amount of N fertilizers used. Grain yield increased with increasing amounts of N fertilizers up to 70 kg N/ha. N rates appeared to affect grain yield by causing variations in the number of panicles/m 2 . Leaf chlorophyll readings at the end of the tillering stage were positively correlated with the number of panicles/m 2 , suggesting that it could be a useful parameter for predicting productivity. There was a significant increase in the N uptake of the rice but a decrease in the apparent N recovery and Nuse efficiency of applied fertilizer N, with the application of increasing rates of N fertilizer. In all instances, except in plots fertilized with 140 kg N/ha, the amount of N removed by plants was significantly higher than that applied as N fertilizer. The differences were positively correlated with the values for N fixation, suggesting a significant contribution by N fixation to rice production. These results show that a rational use of biological N fixation, in combination with inorganic N fertilization, would permit the input of N fertilizers to be reduced by c. 50 % without any significant loss of productivity and with an ecological benefit for the whole ecosystem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.